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PREFACE

I wrote this book from my perspective as a designer in industry, primarily for other
designers and users of antennas. On occasion I have prepared and taught antenna
courses, for which I developed a systematic approach to the subject. For the last
decade I have edited the “Antenna Designer’s Notebook™ column in the IEEE antenna
magazine. This expanded edition adds a combination of my own design notebook and
the many other ideas provided to me by others, leading to this collection of ideas that
I think designers should know.

The book contains a systematic approach to the subject. Every author would like to
be read from front to back, but my own career assignments would have caused to me
to jump around in this book. Nevertheless, Chapter 1 covers those topics that every
user and designer should know. Because I deal with complete antenna design, which
includes mounting the antenna, included are the effects of nearby structures and how
they can be used to enhance the response. We all study ideal antennas floating in free
space to help us understand the basics, but the real world is a little different.

Instead of drawing single line graphs of common relationships between two param-
eters, I generated scales for calculations that I perform over and over. I did not supply
a set of computer programs because I seldom use collections supplied by others, and
younger engineers find my programs quaint, as each generation learns a different com-
puter language. You’ll learn by writing your own.

IEEE Antennas and Propagation Society’s digital archive of all material published
from 1952 to 2000 has changed our approach to research. I have not included extensive
bibliographies, because I believe that it is no longer necessary. The search engine of the
archive can supply an exhaustive list. I referred only to papers that I found particularly
helpful. Complete sets of the transactions are available in libraries, whereas the wealth
of information in the archive from conferences was not. I have started mining this
information, which contains many useful design ideas, and have incorporated some
of them in this book. In this field, 40-year-old publications are still useful and we
should not reinvent methods. Many clever ideas from industry are usually published

XV



XVvi PREFACE

only once, if at all, and personally, I’ll be returning to this material again and again,
because all books have limited space.

As with the first edition, I enjoyed writing this book because I wanted to express
my point of view of a rewarding field. Although the amount of information available
is overwhelming and the mathematics describing it can cloud the ideas, I hope my
explanations help you develop new products or use old ones.

I would like to thank all the authors who taught me this subject by sharing their ideas,
especially those working in industry. On a personal note I thank the designers at Lock-
heed Martin, who encouraged me and reviewed material while I wrote: in particular,
Jeannette McDonnell, Thomas Cencich, Donald Huebner, and Julie Huffman.

THoMAS A. MILLIGAN



PROPERTIES OF ANTENNAS

One approach to an antenna book starts with a discussion of how antennas radiate.
Beginning with Maxwell’s equations, we derive electromagnetic waves. After that
lengthy discussion, which contains a lot of mathematics, we discuss how these waves
excite currents on conductors. The second half of the story is that currents radiate
and produce electromagnetic waves. You may already have studied that subject, or if
you wish to further your background, consult books on electromagnetics. The study of
electromagnetics gives insight into the mathematics describing antenna radiation and
provides the rigor to prevent mistakes. We skip the discussion of those equations and
move directly to practical aspects.

It is important to realize that antennas radiate from currents. Design consists of
controlling currents to produce the desired radiation distribution, called its pattern.
In many situations the problem is how to prevent radiation from currents, such as in
circuits. Whenever a current becomes separated in distance from its return current, it
radiates. Simply stated, we design to keep the two currents close together, to reduce
radiation. Some discussions will ignore the current distribution and instead, consider
derived quantities, such as fields in an aperture or magnetic currents in a slot or around
the edges of a microstrip patch. You will discover that we use any concept that provides
insight or simplifies the mathematics.

An antenna converts bound circuit fields into propagating electromagnetic waves
and, by reciprocity, collects power from passing electromagnetic waves. Maxwell’s
equations predict that any time-varying electric or magnetic field produces the oppo-
site field and forms an electromagnetic wave. The wave has its two fields oriented
orthogonally, and it propagates in the direction normal to the plane defined by the
perpendicular electric and magnetic fields. The electric field, the magnetic field, and
the direction of propagation form a right-handed coordinate system. The propagating
wave field intensity decreases by 1/R away from the source, whereas a static field

Modern Antenna Design, Second Edition, By Thomas A. Milligan
Copyright © 2005 John Wiley & Sons, Inc.



2 PROPERTIES OF ANTENNAS

drops off by 1/R?. Any circuit with time-varying fields has the capability of radiating
to some extent.

We consider only time-harmonic fields and use phasor notation with time depen-
dence e/“’. An outward-propagating wave is given by e/ *8=¢) \here k, the wave
number, is given by 2m/A. A is the wavelength of the wave given by c/f, where c is
the velocity of light (3 x 10® m/s in free space) and f is the frequency. Increasing the
distance from the source decreases the phase of the wave.

Consider a two-wire transmission line with fields bound to it. The currents on a
single wire will radiate, but as long as the ground return path is near, its radiation will
nearly cancel the other line’s radiation because the two are 180° out of phase and the
waves travel about the same distance. As the lines become farther and farther apart,
in terms of wavelengths, the fields produced by the two currents will no longer cancel
in all directions. In some directions the phase delay is different for radiation from the
current on each line, and power escapes from the line. We keep circuits from radiating
by providing close ground returns. Hence, high-speed logic requires ground planes to
reduce radiation and its unwanted crosstalk.

1-1 ANTENNA RADIATION

Antennas radiate spherical waves that propagate in the radial direction for a coordinate
system centered on the antenna. At large distances, spherical waves can be approx-
imated by plane waves. Plane waves are useful because they simplify the problem.
They are not physical, however, because they require infinite power.

The Poynting vector describes both the direction of propagation and the power
density of the electromagnetic wave. It is found from the vector cross product of the
electric and magnetic fields and is denoted S:

S=ExH' W/m’

Root mean square (RMS) values are used to express the magnitude of the fields. H* is
the complex conjugate of the magnetic field phasor. The magnetic field is proportional
to the electric field in the far field. The constant of proportion is 7, the impedance of
free space (n = 376.73 Q):

E2
|S|=S=L W/m? (1-1)
n

Because the Poynting vector is the vector product of the two fields, it is orthogonal to
both fields and the triplet defines a right-handed coordinate system: (E, H, S).
Consider a pair of concentric spheres centered on the antenna. The fields around the
antenna decrease as 1/R, 1/R%, 1/R3, and so on. Constant-order terms would require
that the power radiated grow with distance and power would not be conserved. For
field terms proportional to 1/R?, 1/R?, and higher, the power density decreases with
distance faster than the area increases. The energy on the inner sphere is larger than that
on the outer sphere. The energies are not radiated but are instead concentrated around
the antenna; they are near-field terms. Only the 1/R? term of the Poynting vector
(1/R field terms) represents radiated power because the sphere area grows as R? and



GAIN 3

gives a constant product. All the radiated power flowing through the inner sphere will
propagate to the outer sphere. The sign of the input reactance depends on the near-field
predominance of field type: electric (capacitive) or magnetic (inductive). At resonance
(zero reactance) the stored energies due to the near fields are equal. Increasing the
stored fields increases the circuit Q and narrows the impedance bandwidth.

Far from the antenna we consider only the radiated fields and power density. The
power flow is the same through concentric spheres:

4RI St avg = 4TUR3S) ave

The average power density is proportional to 1/R?. Consider differential areas on the
two spheres at the same coordinate angles. The antenna radiates only in the radial
direction; therefore, no power may travel in the 6 or ¢ direction. Power travels in flux
tubes between areas, and it follows that not only the average Poynting vector but also
every part of the power density is proportional to 1/R?:

SiR?sin0 df dp = S,R3 sin6 d d¢

Since in a radiated wave S is proportional to 1/R?, E is proportional to 1/R. It is
convenient to define radiation intensity to remove the 1/R? dependence:

U®,$) = S(R,0,p)R>  W/solid angle

Radiation intensity depends only on the direction of radiation and remains the same
at all distances. A probe antenna measures the relative radiation intensity (pattern)
by moving in a circle (constant R) around the antenna. Often, of course, the antenna
rotates and the probe is stationary.

Some patterns have established names. Patterns along constant angles of the spher-
ical coordinates are called either conical (constant 8) or great circle (constant ¢). The
great circle cuts when ¢ = 0° or ¢ = 90° are the principal plane patterns. Other named
cuts are also used, but their names depend on the particular measurement positioner,
and it is necessary to annotate these patterns carefully to avoid confusion between
people measuring patterns on different positioners. Patterns are measured by using
three scales: (1) linear (power), (2) square root (field intensity), and (3) decibels (dB).
The dB scale is used the most because it reveals more of the low-level responses
(sidelobes).

Figure 1-1 demonstrates many characteristics of patterns. The half-power beamwidth
is sometimes called just the beamwidth. The tenth-power and null beamwidths are used
in some applications. This pattern comes from a parabolic reflector whose feed is moved
off the axis. The vestigial lobe occurs when the first sidelobe becomes joined to the
main beam and forms a shoulder. For a feed located on the axis of the parabola, the
first sidelobes are equal.

1-2 GAIN

Gain is a measure of the ability of the antenna to direct the input power into radiation
in a particular direction and is measured at the peak radiation intensity. Consider the
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FIGURE 1-1 Antenna pattern characteristics.

power density radiated by an isotropic antenna with input power P, at a distance R:
S = Py/4mR?%. An isotropic antenna radiates equally in all directions, and its radiated
power density S is found by dividing the radiated power by the area of the sphere
4mR?. The isotropic radiator is considered to be 100% efficient. The gain of an actual
antenna increases the power density in the direction of the peak radiation:

PG |E|? 1 [PGn
S = = — El =— =48 1-2
41 R? n or Kl RV 4n 1 (1-2)

Gain is achieved by directing the radiation away from other parts of the radiation
sphere. In general, gain is defined as the gain-biased pattern of the antenna:

PG, ,
S0, ¢) = % power density
PoG (0, L .
U®,¢) = % radiation intensity (1-3)

The surface integral of the radiation intensity over the radiation sphere divided by the
input power Py is a measure of the relative power radiated by the antenna, or the
antenna efficiency:

Pr 27 it G 9’
— = / / ©.9) sinfdfd¢ = n, efficiency
Py o Jo T

4



GAIN 5

where P, is the radiated power. Material losses in the antenna or reflected power
due to poor impedance match reduce the radiated power. In this book, integrals in
the equation above and those that follow express concepts more than operations we
perform during design. Only for theoretical simplifications of the real world can we find
closed-form solutions that would call for actual integration. We solve most integrals
by using numerical methods that involve breaking the integrand into small segments
and performing a weighted sum. However, it is helpful that integrals using measured
values reduce the random errors by averaging, which improves the result.

In a system the transmitter output impedance or the receiver input impedance may
not match the antenna input impedance. Peak gain occurs for a receiver impedance
conjugate matched to the antenna, which means that the resistive parts are the same
and the reactive parts are the same magnitude but have opposite signs. Precision gain
measurements require a tuner between the antenna and receiver to conjugate-match
the two. Alternatively, the mismatch loss must be removed by calculation after the
measurement. Either the effect of mismatches is considered separately for a given
system, or the antennas are measured into the system impedance and mismatch loss is
considered to be part of the efficiency.

Example Compute the peak power density at 10km of an antenna with an input
power of 3W and a gain of 15dB.
First convert dB gain to a ratio: G = 10'%/'% = 31.62. The power spreads over the
sphere area with radius 10km or an area of 47(10%)? m?. The power density is
(B3W)(31.62)
47 x 108 m?

We calculate the electric field intensity using Eq. (1-2):

= 75.5nW/m?

IE| = /Sy = /(75.5 x 10-9)(376.7) = 5333 wV/m

Although gain is usually relative to an isotropic antenna, some antenna gains are
referred to a A/2 dipole with an isotropic gain of 2.14 dB.

If we approximate the antenna as a point source, we compute the electric field
radiated by using Eq. (1-2):

e MR TPG (O, )n

E®.¢)=—¢ s (1-4)
This requires only that the antenna be small compared to the radial distance R.
Equation (1-4) ignores the direction of the electric field, which we define as polariza-
tion. The units of the electric field are volts/meter. We determine the far-field pattern
by multiplying Eq. (1-4) by R and removing the phase term e /*® since phase has
meaning only when referred to another point in the far field. The far-field electric field
E¢ unit is volts:

2
PyG®, 1 4
Eq(0,¢) =/ % or G@O,¢)=— [Effw, ¢>‘/—“} (1-5)
L P() n

During analysis, we often normalize input power to 1 W and can compute gain easily
from the electric field by multiplying by a constant \/4nt/n = 0.1826374.
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1-3 EFFECTIVE AREA

Antennas capture power from passing waves and deliver some of it to the terminals.
Given the power density of the incident wave and the effective area of the antenna,
the power delivered to the terminals is the product

Py = SAcef (1-6)

For an aperture antenna such as a horn, parabolic reflector, or flat-plate array, effective
area is physical area multiplied by aperture efficiency. In general, losses due to material,
distribution, and mismatch reduce the ratio of the effective area to the physical area.
Typical estimated aperture efficiency for a parabolic reflector is 55%. Even antennas
with infinitesimal physical areas, such as dipoles, have effective areas because they
remove power from passing waves.

1-4 PATH LOSS [1, p. 183]

We combine the gain of the transmitting antenna with the effective area of the receiv-
ing antenna to determine delivered power and path loss. The power density at the
receiving antenna is given by Eq. (1-3), and the received power is given by Eq. (1-6).
By combining the two, we obtain the path loss:

Py AGi(0, )
P, 47R?

Antenna 1 transmits, and antenna 2 receives. If the materials in the antennas are
linear and isotropic, the transmitting and receiving patterns are identical (reciprocal) [2,
p. 116]. When we consider antenna 2 as the transmitting antenna and antenna 1 as the
receiving antenna, the path loss is

Pq _ A1G(0, ¢)
P, 4 R?

Since the responses are reciprocal, the path losses are equal and we can gather and

eliminate terms:

G G

— = — = constant
A A

Because the antennas were arbitrary, this quotient must equal a constant. This constant
was found by considering the radiation between two large apertures [3]:

s_i (1-7)
A A2
We substitute this equation into path loss to express it in terms of the gains or effective
areas:
& = GG, (L>2= AlA, (1-8)
P, 41tR AZR?

We make quick evaluations of path loss for various units of distance R and for fre-
quency f in megahertz using the formula

path loss(dB) = Ky + 201log(fR) — G(dB) — G,(dB) (1-9)
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where Ky depends on the length units:

Unit KU

km 32.45
nm 37.80
miles 36.58
m —27.55

ft —37.87

Example Compute the gain of a 3-m-diameter parabolic reflector at 4 GHz assuming
55% aperture efficiency.
Gain is related to effective area by Eq. (1-7):

4tA
G=—
AZ

We calculate the area of a circular aperture by A = m(D/2)?. By combining these

equations, we have
xD\’ xDf\?
o= (™), = o (1-10)
A c

where D is the diameter and 7, is the aperture efficiency. On substituting the values
above, we obtain the gain:

3n(4 x 10977
G=|2207 | (0.55) = 8685 (39.4dB)
0.3 x 10°

Example Calculate the path loss of a 50-km communication link at 2.2 GHz using
a transmitter antenna with a gain of 25dB and a receiver antenna with a gain of
20dB.

Path loss = 32.45 4 2010g[2200(50)] — 25 — 20 = 88.3dB

What happens to transmission between two apertures as the frequency is increased?
If we assume that the effective area remains constant, as in a parabolic reflector, the
transmission increases as the square of frequency:

Py AAy 1 AA (f)2 _gp

?t_ R2 32 R2

c

where B is a constant for a fixed range. The receiving aperture captures the same power
regardless of frequency, but the gain of the transmitting antenna increases as the square
of frequency. Hence, the received power also increases as frequency squared. Only for
antennas, whose gain is a fixed value when frequency changes, does the path loss
increase as the square of frequency.

1-5 RADAR RANGE EQUATION AND CROSS SECTION

Radar operates using a double path loss. The radar transmitting antenna radiates a field
that illuminates a target. These incident fields excite surface currents that also radiate
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to produce a second field. These fields propagate to the receiving antenna, where they
are collected. Most radars use the same antenna both to transmit the field and to collect
the signal returned, called a monostatic system, whereas we use separate antennas for
bistatic radar. The receiving system cannot be detected in a bistatic system because it
does not transmit and has greater survivability in a military application.

We determine the power density illuminating the target at a range Rr by using
Eq. (1-2):
PrGr(0, ¢)

Sine =
" 47 R3.

(1-11)
The target’s radar cross section (RCS), the scattering area of the object, is expressed in
square meters or dBm?: 10 log(square meters). The RCS depends on both the incident
and reflected wave directions. We multiply the power collected by the target with its
receiving pattern by the gain of the effective antenna due to the currents induced:

POWET efiected _ Ps (er, ¢ra 9i s ¢1)

RCS =0 = TR =
power density incident PrGr/4nR2

(1-12)

In a communication system we call Py the equivalent isotropic radiated power (EIRP),
which equals the product of the input power and the antenna gain. The target becomes
the transmitting source and we apply Eq. (1-2) to find the power density at the receiving
antenna at a range Ry from the target. Finally, the receiving antenna collects the power
density with an effective area A g. We combine these ideas to obtain the power delivered

to the receiver: ArPrGro(O,, ¢y, 0:, &)
Prec _ SRAR _ RLT TO; T r72 i Wi
(4'JTRT)(4T[RR)

We apply Eq. (1-7) to eliminate the effective area of the receiving antenna and gather
terms to determine the bistatic radar range equation:

Prec _ GTGR)"ZG(GV9 ¢r1 91'1 ¢l)
Pr (4m)3RER%

(1-13)

We reduce Eq. (1-13) and collect terms for monostatic radar, where the same antenna
is used for both transmitting and receiving:

Pec  G*M0
Pr  (4n)’R*

Radar received power is proportional to 1/R* and to G>.

We find the approximate RCS of a flat plate by considering the plate as an antenna
with an effective area. Equation (1-11) gives the power density incident on the plate
that collects this power over an area Ag:

_ PTGT(9a¢)A

Pr =
¢ 41'[R% K

The power scattered by the plate is the power collected, P, times the gain of the plate
as an antenna, G p:

PrGr(9;, ¢:)

P, = PcGp =
N C P 4]‘[R%

ARGP(Qra ¢r)
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This scattered power is the effective radiated power in a particular direction, which
in an antenna is the product of the input power and the gain in a particular direction.
We calculate the plate gain by using the effective area and find the scattered power in

terms of area: s
_ PT GT4T[AR

=
4mR2)2
We determine the RCS o by Eq. (1-12), the scattered power divided by the incident
power density:
__ P _4mAh _ G 9)Gr(. 9N
PrGr/4nR2 e 4

(1-14)

The right expression of Eq. (1-14) divides the gain into two pieces for bistatic scatter-
ing, where the scattered direction is different from the incident direction. Monostatic
scattering uses the same incident and reflected directions. We can substitute any object
for the flat plate and use the idea of an effective area and its associated antenna gain.
An antenna is an object with a unique RCS characteristic because part of the power
received will be delivered to the antenna terminals. If we provide a good impedance
match to this signal, it will not reradiate and the RCS is reduced. When we illuminate
an antenna from an arbitrary direction, some of the incident power density will be
scattered by the structure and not delivered to the antenna terminals. This leads to
the division of antenna RCS into the antenna mode of reradiated signals caused by
terminal mismatch and the structural mode, the fields reflected off the structure for
incident power density not delivered to the terminals.

1-6 WHY USE AN ANTENNA?

We use antennas to transfer signals when no other way is possible, such as commu-
nication with a missile or over rugged mountain terrain. Cables are expensive and
take a long time to install. Are there times when we would use antennas over level
ground? The large path losses of antenna systems lead us to believe that cable runs
are better.

Example Suppose that we must choose between using a low-loss waveguide run and a
pair of antennas at 3 GHz. Each antenna has 10 dB of gain. The low-loss waveguide has
only 19.7 dB/km loss. Table 1-1 compares losses over various distances. The waveguide
link starts out with lower loss, but the antenna system soon overtakes it. When the
path length doubles, the cable link loss also doubles in decibels, but an antenna link

TABLE 1-1 Losses Over Distance

Distance Waveguide Antenna Path
(km) Loss (dB) Loss (dB)
2 394 88
4 78.8 94
6 118.2 97.6
10 197 102
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increases by only 6 dB. As the distance is increased, radiating between two antennas
eventually has lower losses than in any cable.

Example A 200-m outside antenna range was set up to operate at 2 GHz using a 2-m-
diameter reflector as a source. The receiver requires a sample of the transmitter signal
to phase-lock the local oscillator and signal at a 45-MHz difference. It was proposed
to run an RG/U 115 cable through the power and control cable conduit, since the run
was short. The cable loss was 36 dB per 100 m, giving a total cable loss of 72dB.
A 10-dB coupler was used on the transmitter to pick off the reference signal, so the
total loss was 82 dB. Since the source transmitted 100 mW (20 dBm), the signal was
—62dBm at the receiver, sufficient for phase lock.

A second proposed method was to place a standard-gain horn (15 dB of gain) within
the beam of the source on a small stand out of the way of the measurement and next
to the receiver. If we assume that the source antenna had only 30% aperture efficiency,
we compute gain from Eq. (1-10) (A = 0.15m):

G= (2" 203 =526 (27.2dB
—<ﬁ)(.>— (27.24B)

The path loss is found from Eq. (1-9) for a range of 0.2 km:
32.45 + 2010g[2000(0.2)] —27.2 — 15 =42.3dB

The power delivered out of the horn is 20dBm — 42.3dB = —22.3dBm. A 20-dB
attenuator must be put on the horn to prevent saturation of the receiver (—30dBm).
Even with a short run, it is sometimes better to transmit the signal between two antennas
instead of using cables.

1-7 DIRECTIVITY

Directivity is a measure of the concentration of radiation in the direction of the

maximum: . L. .
maximum radiation intensity Unnax

directivity = (1-15)

average radiation intensity Uy
Directivity and gain differ only by the efficiency, but directivity is easily estimated
from patterns. Gain—directivity times efficiency—must be measured.
The average radiation intensity can be found from a surface integral over the
radiation sphere of the radiation intensity divided by 4m, the area of the sphere in
steradians:

1 21 b
average radiation intensity = P / / U@®, ¢)sin0dbde = U, (1-16)
T Jo 0

This is the radiated power divided by the area of a unit sphere. The radiation intensity
U (0, ¢) separates into a sum of co- and cross-polarization components:

21 T
o= - / [Uc(©. §) + Ux (0. $)] sin0 do dg (1-17)
47 0 0
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Both co- and cross-polarization directivities can be defined:

Uc,max o U max
Cma directivity, = x.ma (1-18)
Uo

directivity. = 7
0

Directivity can also be defined for an arbitrary direction D (6, ¢) as radiation intensity
divided by the average radiation intensity, but when the coordinate angles are not
specified, we calculate directivity at Up,x.

1-8 DIRECTIVITY ESTIMATES

Because a ratio of radiation intensities is used to calculate directivity, the pattern may be
referred to any convenient level. The most accurate estimate is based on measurements
at equal angle increments over the entire radiation sphere. The average may be found
from coarse measurements by using numerical integration, but the directivity measured
is affected directly by whether the maximum is found. The directivity of antennas with
well-behaved patterns can be estimated from one or two patterns. Either the integral
over the pattern is approximated or the pattern is approximated with a function whose
integral is found exactly.

1-8.1 Pencil Beam

By estimating the integral, Kraus [4] devised a method for pencil beam patterns with
its peak at & = 0°. Given the half-power beamwidths of the principal plane patterns, the
integral is approximately the product of the beamwidths. This idea comes from circuit
theory, where the integral of a time pulse is approximately the pulse width (3-dB
points) times the pulse peak: Uy = 0,0,/47w, where 6, and 6, are the 3-dB beamwidths,
in radians, of the principal plane patterns:

4 41,253
directivity = —— (rad) =

d 1-19
66, 5.6, (deg) (1-19)

Example Estimate the directivity of an antenna with E- and H-plane (principal plane)
pattern beamwidths of 24° and 36°.

41,253

=47.75 (16.8dB)
24(36)

Directivity =

An analytical function, cos?" (6 /2), approximates a broad pattern centered on # = 0°
with a null at § = 180°:

U@®) =cos?N(#/2) or E =cosV(6/2)

The directivity of this pattern can be computed exactly. The characteristics of the
approximation are related to the beamwidth at a specified level, Lvl(dB):
beamwidth [Lvl(dB)] = 4 cos™! (107 1V14B)/20N) (1-20a)
N — —LvI(dB)
20 log[cos(beamwidthy yigg)/4)]
directivity = N + 1 (ratio) (1-20c¢)

(1-20b)
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3-dB Beamwidth

SCALE 1-1 3-dB beamwidth and directivity relationship for cos>™ (9/2) pattern.

Directivity, dB
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10-dB Beamwidth

SCALE 1-2 10-dB beamwidth and directivity relationship for cos*" (6/2) pattern.

Scales 1-1 and 1-2, which give the relationship between beamwidth and directivity
using Eq. (1-20), are useful for quick conversion between the two properties. You can
use the two scales to estimate the 10-dB beamwidth given the 3-dB beamwidth. For
example, an antenna with a 90° 3-dB beamwidth has a directivity of about 7.3 dB. You
read from the lower scale that an antenna with 7.3-dB directivity has a 159.5° 10-dB
beamwidth. Another simple way to determine the beamwidths at different pattern levels
is the square-root factor approximation:

BW[Lvl 2(dB)] _ [Lvl 2(dB)
BWILvl 1(dB)] |\ Lvl 1(dB)

By this factor, beamwidth;gqg = 1.826 beamwidth; 4z; an antenna with a 90° 3-dB
beamwidth has a (1.826)90° = 164.3° 10-dB beamwidth.

This pattern approximation requires equal principal plane beamwidths, but we use
an elliptical approximation with unequal beamwidths:

U8, ¢) = cos*™ (6/2) cos® ¢ + cos*™ (6 /2) sin® ¢ (1-21)

where N, and N, are found from the principal plane beamwidths. We combine the
directivities calculated in the principal planes by the simple formula

2 - directivity, - directivity,,

directivity (ratio) = (1-22)

directivity, + directivity,
Example Estimate the directivity of an antenna with E- and H-plane pattern beam-
widths of 98° and 140°.
From the scale we read a directivity of 6.6dB in the E-plane and 4.37dB in the
H-plane. We convert these to ratios and apply Eq. (1-22):
2(4.57)(2.74)

directivity (ratio)) = —————— =3.426 or 10log(3.426) =5.35dB
4.5742.74
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Many analyses of paraboloidal reflectors use a feed pattern approximation limited
to the front hemisphere with a zero pattern in the back hemisphere:

U@B)=cos®™0 or E=cos¥0  for6 < m/2(90°)

The directivity of this pattern can be found exactly, and the characteristics of the
approximation are

beamwidth [Lvl(dB)] = 2cos ™! (1071I(dB)/20V) (1-23a)
—Lvl(dB
N = vidB) (1-23b)
20 log[cos(beamwidthy yigp)/2)]
directivity = 2(2N + 1) (ratio) (1-23c¢)

We use the elliptical model [Eq. (1-21)] with this approximate pattern and use Eq. (1-22)
to estimate the directivity when the E- and H-plane beamwidths are different.

1-8.2 Butterfly or Omnidirectional Pattern

Many antennas have nulls at & = 0° with rotational symmetry about the z-axis
(Figure 1-2). Neither of the directivity estimates above can be used with these patterns
because they require the beam peak to be at 6 = 0°. We generate this type of antenna
pattern by using mode 2 log-periodic conical spirals, shaped reflectors, some higher-
order-mode waveguide horns, biconical horns, and traveling-wave antennas. A formula
similar to Kraus’s can be found if we assume that all the power is between the 3-dB
beamwidth angles 6, and 6,:

e 6 — cos
Uo=—/ sing do = 281 —€cost
2 ), 2

Rotational symmetry eliminates integration over ¢:

U, 2
directivity = —— = (1-24)
Uy cos @ — cos 6

—
T~

FIGURE 1-2 Omnidirectional antenna pattern with sidelobes scanned above the horizon.
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Directivity, dB of Omnipattern at 6 = 90°
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3-dB Beamwidth

SCALE 1-3 Relationship between 3-dB beamwidth of omnidirectional pattern and directivity.

Example A pattern with rotational symmetry has half-power points at 35° and 75°.
Estimate the directivity.

2
Directivity = m = 3.57 (55 dB)

If the pattern also has symmetry about the 8 = 90° plane, the integral for the average
radiation intensity has limits from O to w/2. Equation (1-24) reduces to directivity =
1/ cos 0.

Example A rotationally symmetric pattern with a maximum at 90° has a 45° beam-
width. Estimate the directivity.
0 =90° —45°/2 = 67.5°, so

1
directivity = o 67 5° =2.61 (4.2dB)
cos 67.

The pattern can be approximated by the function
U(®) = Bsin™(6/2) cos*V (6/2)

but the directivity estimates found by integrating this function show only minor
improvements over Eq. (1-24). Nevertheless, we can use the expression for analytical
patterns. Given beam edges 6, and 6y at a level Lvl(dB), we find the exponential
factors.
Ao In[cos(6y /2)] — In[cos(6./2)]
In[sin(6;,/2)] — In[sin(8y /2)]
N— —|Lv1(dB)|/8.68589
AA{In[sin(0; /2)] — In(sin T M>)} + In(cos(0; /2)) — In(cos T M>)
M = AA(N)

and TM, = tan~!' VAA

A second pattern model of an omnidirectional pattern based on the pattern function
with minor sidelobes and a beam peak at 6, measured from the symmetry axis is

sin[b(6y — )]
b6 —0)
We estimate the directivity from the half-power beamwidth (HPBW) and the beam
peak 6y [5]:
101

directivity(dB) = 101log 5
(HPBW — 0.0027HPBW*) sin 6

(1-25)
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Scan Factor, dB
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SCALE 1-4 Additional directivity of omnidirectional pattern when scanned into conical
pattern.

Scale 1-3 evaluates this formula for a beam at 6, = 90° given HPBW, and Scale 1-4
gives the additional gain when the beam peak scans toward the axis.

The directivity of butterfly patterns with unequal beamwidths in the principal planes
cannot be estimated directly from the foregoing formulas. Similarly, some pencil beam
patterns have large sidelobes which decrease the directivity and cannot be estimated
accurately from Eq. (1-19). Both problems are solved by considering the directivity as
an estimate of the average radiation intensity.

Example A butterfly pattern peak is at 50° in both principal planes, but the beamwidths
are 20° and 50°. Estimate the directivity.
The 3-dB pattern points are given by:

Cut 1 (40° and 60°):

40° — cos 60°
Up = 270 O8O0 . OO _0.133

Cut 2 (25° and 75°):
_cos 25° — cos75°

Up = > =0.324
Average the two pattern integral estimates:
0.133 4 0.324
Uy = 210+ 0.5 =0.228
2
max 1
directivity = ——~ = —— =4.38 (6.4dB)

U, 0.228

Suppose that the beams are at different levels on the same pattern. For example, the
lobe on the right of the first pattern is the peak and the left lobe is reduced by 3 dB.
The peaks of the second pattern are reduced by 1dB. We can average on one pattern
alone. Each lobe contributes Up,x(cosf; — cos6,)/4 to the integral. The integral of
the first pattern is approximated by

0.266 4 0.266 x 1073/10
4

The integral of the second pattern is reduced 1 dB from the peak. The average radiation
intensity is found by averaging the two pattern averages:

0.100 + 0.324 x 107!
0= 2

= 0.100

=0.178

1
directivity = = 5.602 (7.5dB)
0
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Pencil beam patterns with large sidelobes can be averaged in a similar manner: U, =
1/directivity. By using Eq. (1-19) and assuming equal beamwidths, we have U, =
HPBW?/41, 253, where U p is the portion of the integral due to the pencil beam and
HPBW is the beamwidth in degrees.

Example Consider a pencil beam antenna with pattern beamwidths of 50° and 70°
in the principal planes. The second pattern has a sidelobe at § = 60° down 5dB from
the peak and a 30° beamwidth below the 5dB. What is the effect of the sidelobe on
the directivity estimate?

Without the sidelobe the directivity estimate is

directivit 41253 11.79 (10.7dB)
irectivity = =11. .
Y= 50(70)

Consider each pattern separately:

502 702

Upy = ———— = 0.0606 Up, = =0.1188
Pl 41,053 P27 41,253
The sidelobe adds to the second integral:
45° — cos 75°)107/10
Upsy = (cos cos757) = 0.0354

4

Averaging the integrals of the parts gives us 0.1074:

1
directivity = - =9.31 (9.7dB)
0

If there had been a sidelobe on each side, each would have added to the integral.
Estimating integrals in this manner has limited value. Remember that these are only
approximations. More accurate results can be obtained by digitizing the pattern and
performing numerical integration on each pattern by using Eq. (1-16) or (1-17).

1-9 BEAM EFFICIENCY

Radiometer system designs [6, p. 31-6] specify the antenna in terms of beam efficiency.
For a pencil beam antenna with the boresight at 8 = 0, the beam efficiency is the ratio
(or percent) of the pattern power within a specified cone centered on the boresight to
the total radiated power. In terms of the radiation intensity U,

9] 27
/ f U, $)sinb do de
0 0

beam efficiency = (1-26)

T 27
f f U8, ¢)sin6 do de
0 0

where U includes both polarizations if necessary. Extended noise sources, such as
radiometry targets, radiate noise into sidelobes of the antenna. Beam efficiency mea-
sures the probability of the detected target being located within the main beam (6 < 6;).
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Sometimes we can calculate directivity more easily than the pattern everywhere
required by the denominator of Eq. (1-26): for example, a paraboloidal reflector. We
use Egs. (1-15) and (1-16) to calculate the denominator integral:

41U nax
directivity

b4 271
/ / U(@®, ¢)sin0dode =
0 0

This reduces Eq. (1-26) to

0] 21
directivity / / U@©, ¢)sinbdb do
0 Jo

1-27
A1t Uax ( )

beam efficiency =

Equation (1-27) greatly reduces the pattern calculation requirements to compute beam
efficiency when the directivity can be found without pattern evaluation over the entire
radiation sphere.

1-10 INPUT-IMPEDANCE MISMATCH LOSS

When we fail to match the impedance of an antenna to its input transmission line
leading from the transmitter or to the receiver, the system degrades due to reflected
power. The input impedance is measured with respect to some transmission line or
source characteristic impedance. When the two are not the same, a voltage wave is
reflected, pV, where p is the voltage reflection coefficient:

Zay—Zo

= - 1-28
Za+ 2y (1-28)

)
Z4 is the antenna impedance and Z; is the measurement characteristic impedance.
On a transmission line the two traveling waves, incident and reflected, produce a
standing wave:

Vinax = (1 + |,0|)V1 Vinin = (1 - |/0|)Vz (1‘29)
Viwe 1
VSWR = Ymax _ 1417l (1-30)
Vmin 1_ |i0|

VSWR is the voltage standing-wave ratio. We use the magnitude of p, a complex
phasor, since all the terms in Eq. (1-28) are complex numbers. The reflected power is
given by Vi2|,o|2 /Zy. The incident power is Vi2 /Zy. The ratio of the reflected power to
the incident power is |p|%. It is the returned power ratio. Scale 1-5 gives the conversion
between return loss and VSWR:

return loss = —201log |p| (1-31)

- o © + n 0 N w ov
Return Loss, dB
SCALE 1-5 Relationship between return loss and VSWR.
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SCALE 1-6 Reflected power loss due to antenna impedance mismatch.

The power delivered to the antenna is the difference between the incident and the
reflected power. Normalized, it is expressed as

1 — |p|* or reflected power loss(dB) = 10log(1 — |p|*) (1-32)

The source impedance to achieve maximum power transfer is the complex conjugate
of the antenna impedance [7, p. 94]. Scale 1-6 computes the power loss due to antenna
impedance mismatch.

If we open-circuit the antenna terminals, the reflected voltage equals the incident
voltage. The standing wave doubles the voltage along the transmission line compared
to the voltage present when the antenna is loaded with a matched load. We consider
the effective height of an antenna, the ratio of the open-circuit voltage to the input
field strength. The open-circuit voltage is twice that which appears across a matched
load for a given received power. We can either think of this as a transmission line with
a mismatch that doubled the incident voltage or as a Thévenin equivalent circuit with
an open-circuit voltage source that splits equally between the internal resistor and the
load when it is matched to the internal resistor. Path loss analysis predicts the power
delivered to a matched load. The mathematical Thévenin equivalent circuit containing
the internal resistor does not say that half the power received by the antenna is either
absorbed or reradiated; it only predicts the circuit characteristics of the antenna load
under all conditions.

Possible impedance mismatch of the antenna requires that we derate the feed cables.
The analysis above shows that the maximum voltage that occurs on the cable is twice
that present when the cable impedance is matched to the antenna. We compute the
maximum voltage given the VSWR using Eq. (1-29) for the maximum voltage:

_ 2VSWR(V)) 2V,
TETUVSWR 41 14 1/VSWR

(1-33)

1-11 POLARIZATION

The polarization of a wave is the direction of the electric field. We handle all polariza-
tion problems by using vector operations on a two-dimensional space using the far-field
radial vector as the normal to the plane. This method is systematic and reduces chance
of error. The spherical wave in the far field has only 6 and ¢ components of the electric
field: E = E46 + E4p. Eg and E, are phasor components in the direction of the unit
vectors 6 and ¢3 We can also express the direction of the electric field in terms of
a plane wave propagating along the z-axis: E = E,X 4 E,§. The direction of propa-
gation confines the electric field to a plane. Polarization is concerned with methods
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-

FIGURE 1-3 Polarization ellipse.

of describing this two-dimensional space. Both of the above are linear polarization
expansions. We can rewrite them as

.. E,
E=Ey0+ pLo) L= —
Ey
A ~ A ~ E7
E=E.X+0LY) oL = E_) (1-34)

where p; is the linear polarization ratio, a complex constant. If time is inserted into
the expansions, and the tip of the electric field traced in space over time, it appears as
an ellipse with the electric field rotating either clockwise (CW) or counter clockwise
(CCW) (Figure 1-3). 7 is the tilt of the polarization ellipse measured from the x-axis
(¢ = 0) and the angle of maximum response. The ratio of the maximum to minimum
linearly polarized responses on the ellipse is the axial ratio.

If p; = e/™/2, the ellipse expands to a circle and gives the special case of circular
polarization. The electric field is constant in magnitude but rotates either CW (left
hand) or CCW (right hand) at the rate wt for propagation perpendicular to the page.

1-11.1 Circular Polarization Components

The two circular polarizations also span the two-dimensional space of polarization. The
right- and left-handed orthogonal unit vectors defined in terms of linear components are

ﬁ:%(é—jq@) or ﬁ:%(ﬁ—jy) (1-35q)

A e .1

L=—@+j L=—@&+/§ 1-35b
ﬁ( +Jj¢) or ﬁ(x-i-]}’) ( )

The electric field in the polarization plane can be expressed in terms of these new unit

vectors:
E=E/ L+ ErR
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When projecting a vector onto one of these unit vectors, it is necessary to use the
complex conjugate in the scalar (dot) product:

Ak Ak

E; =E-L Er=E-R

When we project R onto itself, we obtain

A %

R-R'=16-jd)-@+jh=2a—-j-j=1

Similarly,
L-R=10+j®)-O+jp)=301+j-j)=0

The right- and left-handed circular (RHC and LHC) components are orthonormal.
A circular polarization ratio can be defined from the equation

L N E ;
E = EL(L + ﬁcR) ﬁ(f = —R = /Ocej(sr
E;

Let us look at a predominately left-handed circularly polarized wave when time and
space combine to a phase of zero for E;. We draw the polarization as two circles
(Figure 1-4). The circles rotate at the rate wt in opposite directions (Figure 1-5), with
the center of the right-handed circular polarization circle moving on the end of the
vector of the left-handed circular polarization circle. We calculate the phase of the
circular polarization ratio . from the complex ratio of the right- and left-handed
circular components. Maximum and minimum electric fields occur when the circles

FIGURE 1-4 Polarization ellipse LHC and RHC components. (After J. S. Hollis, T. J. Lyons,
and L. Clayton, Microwave Antenna Measurements, Scientific Atlanta, 1969, pp. 3—6. Adapted
by permission.)
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FIGURE 1-5 Circular polarization components. (After J. S. Hollis, T. J. Lyons, and L. Clayton,
Microwave Antenna Measurements, Scientific Atlanta, 1969, pp. 3—5. Adapted by permission.)
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SCALE 1-7 Circular cross-polarization/axial ratio.

alternately add and subtract as shown in Figure 1-4. Scale 1-7 shows the relationship
between circular cross-polarization and axial ratio:

Emix = (|EL| + |ER)) /Y2 Emin = (IEL| — |Eg]) /V2
Emax _ |EL|+|ER| _ 1+|:5€|

LHC

: ) Emin |EL|—|ERl  1—1p
axial ratio = fin A (1-36)
Emax E E | + 1
ma=| R|+|L|:|/j|+ RHC
Emin |ER|_|EL| |:Oc|_1
lps] <1 LHC
0 1
- —| <1 RHC
Pc
Emax

axial ratio(dB) = 201log

min

The tilt angle of the polarization ellipse T is one-half §., the phase of p.. Imagine time
moving forward in Figure 1-5. When the LHC vector has rotated §./2 CW, the RHC
vector has rotated §./2 CCW and the two align for a maximum.

1-11.2 Huygens Source Polarization

When we project the currents induced on a paraboloidal reflector to an aperture plane,
Huygens source radiation induces aligned currents that radiate zero cross-polarization
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in the principal planes. We separate feed antenna radiation into orthogonal Huygens
sources for this case. To calculate the far-field pattern of a paraboloid reflector, we can
skip the step involving currents and integrate over the Huygens source fields in the
aperture plane directly. We transform the measured fields of the feed into orthogonal

Huygens sources by
E.| |cos¢p —sing || Egf i
|:Ex} - |:sin¢ cos¢i| [EW (1-37)

where E. is the ¢ = 0 direction of polarization in the feed pattern and Ey is the
¢ = 90° polarization. This division corresponds to Ludwig’s third definition of cross-
polarization [8]. The following matrix converts the Huygens source polarizations to
the normal far-field components of spherical coordinates:

Ey | cos¢ sing E,
|:E¢]_|:—sin¢ cos¢]|:Ex:| (1-38)

1-11.3 Relations Between Bases

In problems with antennas at arbitrary orientations, circularly polarized components
have an advantage over linear components. When the coordinate system is rotated,
both the amplitude and phase change for g, the linear polarization ratio, whereas
the circular polarization ratio g, magnitude is constant under rotations and only the
phase changes. In other words, the ratio of the diameters of the circles (Figure 1-4)
is constant.

The circular components can be found from linear polarization components by pro-
jection.

A . . .
Egr = (E¢0 + Eg¢) - R* = E(Eee +Eyp)- (0 + jo)

1

Eg = ﬁ(Ee + JEg) (1-39)

Similarly,
1 )
E; = —ﬁ(Ee — JjEy)

The linear polarizations can be found in terms of the circular components in the same
manner:

1 J
Eg = _2(EL + ER) Ey = —=(Ep — Ep)

V2 V2
These relations enable the conversion between polarizations.

Good circularly polarized antennas over a wide bandwidth are difficult to build,
but good linearly polarized antennas are obtained easily. After we measure the phase
and amplitude of Ey and E, component phasors, we compute the circular components
from Eq. (1-39), the axial ratio by using Eq. (1-36), and the polarization ellipse tilt
T from one-half the phase of Ex/E;. We employ a leveled phase-locked source to
record two patterns with orthogonal linear sources (or the same linear source is rotated
between patterns). Afterward, we use the equations given above to convert polarization
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to any desired polarization components. We calculate the maximum and minimum
linear components by projecting the linear components into the rotated coordinate
system of the polarization ellipse:

Enax = EgcosT + Egsint
Enin=—Epsint + Egcost

1-11.4 Antenna Polarization Response

The path loss formulas assume that the two antennas have matched polarizations.
Polarization mismatch adds an extra loss. We determine polarization efficiency by
applying the scalar (dot) product between normalized polarization vectors. An antenna
transmitting in the z-direction has the linear components

E, = EX+ pL1§)
The incident wave on the antenna is given by
E;i = E>(X + fr2¥)

where the wave is expressed in the coordinates of the source antenna. The z-axis of
the source is in the direction opposite that of the antenna. It is necessary to rotate the
coordinates of the receiving antenna wave. Rotating about the x-axis is equivalent to
changing the sign of the tilt angle or taking the complex conjugate of E,.

The measurement antenna projects the incident wave polarization onto the antenna
polarization. The antenna measures the incident field, but we need to normalize the
antenna polarization to a unit vector to calculate polarization efficiency:

EXET(1+ prapyy)
V1I+1puil?

We normalize both the incident wave and antenna responses to determine loss due to
polarization mismatch:

E,-Ej =

E; K+ P2y E; £+ 00y

Bl Tthae B it 50

The normalized voltage response is

E -E; _ L+ pf o2 (1-40)
EEal /T + pripf /14 Arasdy,

When we express it as a power response, we obtain the polarization efficiency I':

_ |E; - E;|? _ 1+ 1pL1l*1p12l* + 216111 pral cos(81 — 82)
|E;|?|E, |? (I + oD A + 1p121?)

This is the loss due to polarization mismatch. Given that §; and &, are the phases of
the polarization ratios of the antenna and the incident wave. As expressed in terms of
linear polarization ratios, the formula is awkward because when the antenna is rotated
to determine the peak response, both the amplitudes and phases change. A formula

(1-41)
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using circular polarization ratios would be more useful, because only phase changes
under rotation.
Two arbitrary polarizations are orthogonal (I' = 0) only if

|,51| = } and 81 — 52 = :E]SOO (1-42)
| 021

This can be expressed as vectors by using unit vectors: a; - a5 = 0; a; and a, are the

orthonormal generalized basis vectors for polarization. We can define polarization in

terms of this basis with a polarization ratio p. By paralleling the analysis above for

linear polarizations, we obtain the polarization efficiency for an arbitrary orthonormal

polarization basis:

r— 1+ 51121621 + 21411 2] cos(8; — 82)
(L + 16D+ 621

It has the same form as Eq. (1-41) derived for linear polarizations.

We can use Eq. (1-43) with circular polarizations whose polarization ratio p, magni-
tudes are constant with rotations of the antenna. The maximum and minimum polariza-
tion efficiencies occur when §; — &, equals 0° and 180°, respectively. The polarization
efficiency becomes

(1-43)

(= |51]162])?
Timax /min = A . 1-44
M 15 DA+ 162 (1-44)

In all other vector pair bases for polarization, the magnitude of the polarization ratio
p changes under rotations.

Figure 1-6 expresses Eq. (1-44) as a nomograph. If we have fixed installations, we
can rotate one antenna until the maximum response is obtained and realize minimum
polarization loss. In transmission between mobile antennas such as those mounted on
missiles or satellites, the orientation cannot be controlled and the maximum polariza-
tion loss must be used in the link analysis. Circularly polarized antennas are used in
these cases.

Example A satellite telemetry antenna is RHC with an axial ratio of 7 dB. The ground
station is RHC with a 1.5-dB axial ratio. Determine the polarization loss.

Because the orientation of the satellite is unknown, we must use the maximum
polarization loss. To find it, use the RHC ends of the scales in Figure 1-6. Draw
a line from 7 on the leftmost scale to 1.5 on the center scale. Read the loss on the
scale between: 0.9 dB. The measured cross-polarization response of a linearly polarized
antenna is the reciprocal of the axial ratio, the same absolute magnitude in decibels.

Example Suppose that the linear cross-polarization responses of two antennas in a
stationary link are given as 10 and 20 dB. Compute the minimum polarization loss.
We rotate one of the antennas until the maximum response is found. The specification
of cross-polarization response does not state whether an antenna is predominately left-
or right-handed circularly polarized. It must be one or the other. Suppose that the 20-
dB cross-polarization antenna is LHC. If the other antenna also is LHC, we use a line
drawn from the lower portion of the center scale in Figure 1-6 to the rightmost LHC
scale and read 0.2dB of loss on the scale between the two. The second possibility is
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FIGURE 1-6 Maximum and minimum polarization loss. (After A. C. Ludwig, A simple graph
for determining polarization loss, Microwave Journal, vol. 19, no. 9, September 1976, p. 63.)

that the antenna could be predominately RHC. On drawing a line to the RHC (lower)
scale, we read 0.7dB on the center scale. When polarization is expressed in terms
of linearly polarized components, it is ambiguous to give only magnitudes and no
information of the circular polarization sense.

1-11.5 Phase Response of Rotating Antennas

The polarization sense of an antenna can be determined from the phase slope of a
rotating antenna. Before starting the phase measurement, determine that the setup is
proper. Some older phase—amplitude receivers are ambiguous, depending on whether
the local oscillator frequency was above or below the signal frequency. We use the
convention that increased distance between antennas gives decreased phase. Move the
antenna away from the source and observe decreasing phase or correct the setup. A
rotating linearly polarized source field is given by

E; = E;(cos aX + sinay)

where « is clockwise rotation viewed from the direction of propagation (forward). A
horizontally polarized linear antenna has the response E, = E|X. It responds to the
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rotating linear source field, E; E, cos «. The phase is constant under rotation until the
null is passed and it flips 180° through the null.
An RHC polarized antenna has the response E;(X — j§¥). It responds to the rotating
linear source field,
E\Ey(cosa — jsina) = EjEre™/®

The magnitude remains constant, but the phase decreases with rotation. Phase increases
when the antenna is LHC. By observing the phase slope, the sense of the predominant
polarization can be determined: RHC = negative phase slope; LHC = positive phase
slope. It is easily remembered by considering the basis vectors of circular polarization:

| N
E(X J¥)

In rotation from the x-axis to the y-axis, the phase decreases 90°.

R =

1-11.6 Partial Gain

If we measure the antenna gain to one polarization (e.g., RHC) and operate it in a
link with an antenna also measured to one polarization, Eq. (1-44) fails to predict the
response. Polarization efficiency assumes that the antenna gain was measured using
a source field with matched polarization. Gains referred to a single polarization are
partial gains. If we align the two polarization ellipses of the two antennas, the response
increases. Similarly, when the ellipses are crossed, the link suffers polarization loss.
To obtain the full gain, we add the factor

101og(1 + [p|?) (1-45)

to the partial gain, an expression valid using p for either circular or linear polarization.
In terms of axial ratio A for circular polarization, the conversion is

V2(1 + A?)

201log A

When using measured partial gains for both antennas, the range of polarization effi-
ciency is given by

polarization efficiency I' = 201log(1 £ p;p2) (1-46)

We can convert Eq. (1-46) to expressions that use the axial ratio of the two antennas:

2(A1A; + 1)
(A + DA+ 1D
2(A1 + Ay
(A + DA+ 1)

maximum polarization efficiency = 20 log

minimum polarization efficiency = 20log

1-11.7 Measurement of Circular Polarization Using Amplitude Only

The analyses given above assume that you can measure both amplitude and phase
response of antennas, whereas in some cases only amplitude can be measured. If
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you do not know the sense of circular polarization, it will be necessary to build two
antennas that are identical except for their circular polarization sense. For example, you
can build two identically sized counter-wound helical wire antennas. You determine
polarization sense by using both sources and comparing measured levels. Once you
establish the polarization sense, mount a linearly polarized measurement antenna with
low cross-polarization. For a given pointing direction of the antenna under test, rotate
the source antenna and record the maximum and minimum levels. The ratio of the
maximum to the minimum is the axial ratio.

To measure gain, rotate the measurement linearly polarized antenna to determine the
peak response. Replace the antenna under test with a linearly polarized gain standard
(horn) and perform a gain comparison measurement. Given the antenna axial ratio A,
you adjust the linearly polarized gain by the correction factor:

. . A+1
gain correction factor(dB) = 20log —— (1-47)

V24

We obtain the RHC and LHC response from

1 1
= E(Emax + Emin) and EL = E(Emax - Emin)

assuming that the antenna is predominately RHC.

Eg

1-12 VECTOR EFFECTIVE HEIGHT

The vector effective height relates the open-circuit voltage response of an antenna to
the incident electric field. Although we normally think of applying effective height to
a line antenna, such as a transmitting tower, the concept can be applied to any antenna.
For a transmitting tower, effective height is the physical height multiplied by the ratio
of the average current to the peak current:

Voc = E; - h* (1-48)

The vector includes the polarization properties of the antenna. Remember from our
discussion of antenna impedance mismatch that the open-circuit voltage Vo is twice
that across a matched load Z; for a given received power: Voc = 24/ PrecZr. The
received power is the product of the incident power density S and the effective area
of the antenna, A.g. Gathering terms, we determine the open-circuit voltage from the
incident field strength E and a polarization efficiency I':

Zp AeieI”
n

Voc = 2E

We calculate polarization efficiency by using the scalar product between the normalized
incident electric field and the normalized vector effective height:

_ |E;-h*?

= 1-49
|E;|?|h? (1-49)
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Equation (1-49) is equivalent to Eq. (1-41) because both involve the scalar product
between the incident wave and the receiving polarization, but the expressions have
different normalizations. You can substitute vector effective height of the transmit-
ting antenna for the incident wave in Eq. (1-49) and calculate polarization efficiency
between two antennas. When an antenna rotates, we rotate h. We could describe polar-
ization calculations in terms of vector effective height, which would parallel and repeat
the discussion given in Section 1-11. We relate the magnitude of the effective height
h to the effective area A.s and the load impedance Z :

Z1 Acit
n

h=2

(1-50)

The mutual impedance in the far field between two antennas can be found from the
vector effective heights of both antennas [9, p. 6—9]. Given the input current /; to the
first antenna, we find the open-circuit voltage of the second antenna:

_ (Moc _ jkne M

= h;-h} 1-51
11 4mr 172 ( )

Zs

When we substitute Eq. (1-50) into Eq. (1-51) and gather terms, we obtain a general
expression for the normalized mutual impedance of an arbitrary pair of antennas given
the gain of each in the direction of the other antenna as a function of spacing r:

Zin Glee,jk, h;-h}
NVZiZi, kr [hy|lhy|

The magnitude of mutual impedance increases when the gain increases or the distance
decreases. Of course, Eq. (1-52) is based on a far-field equation and gives only an
approximate answer, but it produces good results for dipoles spaced as close as 1A.
Figure 1-7 gives a plot of Eq. (1-52) for isotropic gain antennas with matched polar-
izations which shows the 1/R amplitude decrease with distance and that resistance and

(1-52)
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two antennas with 0 dB gain along the line between them.
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reactance curves are shifted out of phase. The cosine and sine factors of the complex
exponential produce this effect. We multiply these curves by the product of the antenna
gains, but the increased gain from larger antennas means that it is a greater distance
to the far field. When we bring two antennas close together, the currents on each
antenna radiate and excite additional currents on the other that modify the result given
by Eq. (1-52). But as we increase the distance, these induced current effects fade.
Equivalent height analysis can be repeated using magnetic currents (e.g., used with
microstrip patches), and Eqs. (1-51) and (1-52) become mutual admittance. Figure 1-7
is also valid for these antennas when we substitute normalized mutual admittance for
normalized mutual impedance. For antennas with pattern nulls directed toward each
other, the mutual impedance decreases at the rate 1/R?%, due to the polarization of
current direction h.

1-13 ANTENNA FACTOR

The EMC community uses an antenna connected to a receiver such as a spectrum
analyzer, a network analyzer, or an RF voltmeter to measure field strength E. Most
of the time these devices have a load resistor Z; that matches the antenna impedance.
The incident field strength E; equals antenna factor AF times the received voltage V.
We relate this to the antenna effective height:

E, 2
AF= L _ % (1-53)
Vrec h

AF has units meter~! but is often given as dB(m~!). Sometimes, antenna factor is
referred to the open-circuit voltage and it would be one-half the value given by
Eq. (1-53). We assume that the antenna is aligned with the electric field; in other
words, the antenna polarization is the electric field component measured:

n 1 [ 4n
AF = = -
V4 L Aeff A Z LG
This measurement may be corrupted by a poor impedance match to the receiver and

any cable loss between the antenna and receiver that reduces the voltage and reduces
the calculated field strength.

1-14 MUTUAL COUPLING BETWEEN ANTENNAS

The simplest approach for coupling between antennas is to start with a far-field approx-
imation. We can modify Eq. (1-8) for path loss and add the phase term for the finite
distance to determine the S-parameter coupling:

—jkr E.-E*
So1 = /G,Grs 1" (1-54)

R
2kr |Eq||Ey|

Equation (1-54) includes the polarization efficiency when the transmitted polarization
does not match the receiving antenna polarization. We have an additional phase term
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because the signal travels from the radiation phase center along equivalent transmission
lines to the terminals of each antenna. Equations (1-52) and (1-54) have the same
accuracy except that Eq. (1-54) eliminates the need to solve the two-port circuit matrix
equation for transmission loss. These formulas assume that antenna size is insignificant
compared to the distance between the antennas, and each produces approximately
uniform amplitude and phase fields over the second element.

We can improve on Eq. (1-54) when we use the current distribution on one of
the two antennas and calculate the near-field fields radiated by the second antenna
at the location of these currents. Since currents vary across the receiving antenna,
we use vector current densities to include direction: J, electric and M, magnetic.
Although magnetic current densities are fictitious, they simplify the representation of
some antennas. We compute coupling from reactance, an integral across these currents

Sy = 7'] E .I —H -M)dV -55
21 2 /—PrPt /‘/‘ ( t°Jdr 1 r) (1 )

The input power to the transmitting antenna P, produces fields E; and H,. The power P,
into the receiving antenna excites the currents. The scalar product between the incident
fields and the currents includes polarization efficiency. If we know the currents on the
transmitting antennas, we calculate the near-field pattern response from them at the
location of the receiving antenna. Similar to many integrals, Eq. (1-55) is notional
because we perform the integral operations only where currents exist. The currents
could be on wire segments or surfaces. A practical implementation of Eq. (1-55) divides
the currents into patches or line segments and performs the scalar products between the
currents and fields on each patch and sums the result. A second form of the reactance
[see Eq. (2-35)] involves an integral over a surface surrounding the receiving antenna.
In this case each antenna radiates its field to this surface, which requires near-field
pattern calculations for both. Equation (1-55) requires adding the phase length between
the input ports and the currents, similar to using Eq. (1-54). When we use Eq. (1-55),
we assume that radiation between the two antennas excites insignificant additional
currents on each other. We improve the answer by using a few iterations of physical
optics, which finds induced currents from incident fields (Chapter 2).

We improve on Eq. (1-55) by performing a moment method calculation between the
two antennas. This involves subdividing each antenna into small elements excited with
simple assumed current densities. Notice the similarity between Eqs. (1-52) and (1-54)
and realize that Eq. (1-55) is a near-field version of Eq. (1-54). We use reactance to
compute the mutual impedance Z;; between the small elements as well as their self-
impedance. For the moment method we calculate a mutual impedance matrix with a
row and column for each small current element. We formulate a matrix equation using
the mutual impedance matrix and an excitation vector to reduce coupling to a circuit
problem. This method includes the additional currents excited on each antenna due to
the radiation of the other.

1.15 ANTENNA NOISE TEMPERATURE [10]

To a communication or radar system, an antenna contributes noise from two sources.
The antenna receives noise power because it looks out on the sky and ground. The
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FIGURE 1-8 Antenna sky temperature. Noise temperature of an idealized antenna (lossless,
no Earth-directed sidelobes) located at the Earth’s surface, as a function of frequency, for a
number of beam elevation angles. Solid curves are for geometric-mean galactic temperature,
sun noise 10 times quiet level, sun in unity-gain sidelobe, cool temperate-zone troposphere,
2. 7K cosmic blackbody radiation, zero ground noise. The upper dashed curve is for maximum
galactic noise (center of galaxy, narrow-beam antenna). Sun noise 100 times quiet level, zero
elevation, other factors the same as solid curves. The lower dashed curve is for minimum galactic
noise, zero sun noise, 90° elevation angle. (The bump in the curves at about 500 MHz is due to
the sun-noise characteristic. The curves for low elevation angles lie below those for high angles
at frequencies below 400 MHz because of reduction of galactic noise by atmospheric absorption.
The maxima at 22.2 and 60 GHz are due to the water-vapor and oxygen absorption resonance.)
(From L. V. Blake, A guide to basic pulse-radar maximum-range calculation, Naval Research
Laboratory Report 5868, December 1962.)

ground generates noise because it is about 290 K and a portion of the antenna pattern
falls on it. Similarly, the sky adds noise dependent on the elevation angle and the oper-
ating frequency. Figure 1-8 gives the sky temperature versus frequency and elevation
angle. The frequency range of lowest noise occurs in the middle of microwave fre-
quencies of 1 to 12 GHz. The graphs show a large variation between the dashed curves,
which occurs because of antenna direction and the pointing relative to the galactic cen-
ter. In the middle of microwaves the sky noise temperatures are around 50 K, whereas
near zenith the temperature is under 10 K. Near the horizon it rises because of the
noise from oxygen and water vapor. The exact value must be determined for each
application. As frequency decreases below 400 MHz, the sky temperature rises rapidly
and becomes independent of antenna pointing. The curve continues the rapid rise at
the same slope for lower frequencies. Low-frequency sky temperatures are often given
as decibels relative to 290 K.
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An antenna receives this blackbody noise from the environment, but the value that
affects the communication system depends both on the pattern shape and the direction
of the main beam. We determine the antenna noise temperature by integrating the
pattern times the environmental noise temperature distribution:

27w b4
T, = L / GO, §)T, (0, ¢) sin6 dO do (1-56)
47 0 0

where G(0, ¢) is the antenna gain pattern and 7;(6, ¢) is the angle-dependent
blackbody radiation of the environment. Changing the antenna pointing changes 7.
Equation (1-56) is a weighted average of the environment noise temperature, usually
referred to as the sky temperature. The second source of noise in the antenna is that of
components that have both dissipative losses and reflection losses that generate noise.

A receiving system needs to maximize the signal-to-noise ratio for given resources.
System considerations, such as bit error rate, establish the required S/N ratio. We
determine the noise power from the product

N =koB,T, (1-57)

where kg is Boltzmann’s constant (1.38 x 107W/K - Hz = —228.6dB) and B, is the
receiver bandwidth (Hz). T, is the effective noise temperature (K). When referring
noise temperature to other parts of the network, we increase or decrease it by the gain
or loss, since it represents power and not a true temperature. Antenna gain is a measure
of the signal level, since we can increase gain independent of the noise temperature,
although the gain pattern is a factor by Eq. (1-56).

The antenna conductor losses have an equivalent noise temperature:

T, =(L— DT, (1-58)

where T, is the antenna physical temperature and L is the loss (a ratio > 1). From
a systems point of view, we include the transmission line run to the first amplifier
or mixer of the receiver. We do not include the current distribution losses (aperture
efficiencies) that reduce gain in Eq. (1-58) because they are a loss of potential antenna
gain and not noise-generating losses (random electrons). The antenna—receiver chain
includes mismatch losses, but these do not generate random electrons, only reflected
waves, and have a noise temperature of zero. We include them in a cascaded devices
noise analysis as an element with loss only.

Noise characteristics of some receiver components are specified as the noise figure
Fy (ratio), and cascaded devices’ noise analysis can be analyzed using the noise figure,
but we will use noise temperature. Convert the noise figures to noise temperature using

Te = (Fy — DTy (1-59)

Ty is the standard reference temperature 290 K.

We calculate noise temperature for the entire receiver chain of devices at a particular
point normally at the input to the first device. To calculate the S/N ratio we use the
transmitter power, path loss (including antenna gain and polarization efficiency), and
the gains (losses) of any devices for signal to the location in the receiver chain where
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noise temperature is being calculated. We characterize a given antenna by the ratio
G/T, a measure independent of transmitter power and path loss, but including the
receiver noise characteristics. Using the input of the first device as the noise reference
point, we calculate the input noise temperature from component noise temperatures

and gains:
rT=r+ 2 B B
TG, T GG, T G1GyGs

(1-60)

Equation (1-60) merely states that noise temperatures are powers that decrease when
we pass backward through a device with gain G. Each noise term is referred to the
input of the device, and we pass backward to all previous devices and reduce noise
temperature by 1/G. If we decided to locate the noise reference point at the input to
the second device, the noise initially referred to the chain input would increase by the
gain of the first device. The system noise temperature becomes 7(y):

T3 T4
Toy=T1Gi+ T+ —+

G, T GGy T

The signal also passes through the first device and the new gain at the input to the
second device becomes GG . The gain and the noise temperature change by the same
factor G; and produce a constant ratio. By extending these operations to any location
in the receiver chain, we show that G/T is constant through the receiver device chain.

It is easiest to illustrate G/T noise calculations with an example. A ground station
has a 5-m-diameter paraboloid reflector with 60% aperture efficiency with the system
operating at 2.2 GHz (A = 0.136 m). We compute antenna directivity using the physical
area and aperture efficiency:

7 - Dia

2 5 \2
=060 —=) =7972 (39dB)
0.136

The reflector feed loss is 0.2dB and it has a VSWR of 1.5:1. The cable between
the feed and the first amplifier (LNA) has a 0.5-dB loss. These are elements under
control of the antenna designer. We calculate the noise temperature of these by using
Eq. (1-58) when we use a physical antenna temperature of 37.7°C (100°F) (310.8 K).

directivity = 0.60 (

Feed loss: Ty = (10%%/10 — 1)310.8 = 14.65K
Feed mismatch: T, = 0K
Cable: T; = (10°/19 — 1)310.8 = 37.92K

The gains of these devices are G; = 1070%/10 = 0.955 (feed loss), G, = 107%18/10 —
0.959 (reflected power loss for 1.5:1 VSWR), and G3 = 10793/ = (.891 (cable loss).
The antenna sees the environment that generates noise due to blackbody radiation from
the sky and ground. A typical value for the antenna pointed at 5° elevation is 50 K. This
is not a physical temperature but represents an equivalent received power. Remember
that the 60% aperture efficiency has no noise or loss contribution, because it only
represents the loss of potential gain, since no random electrons are generated.

We must consider the rest of the receiver chain when calculating the total input
noise temperature. For this example we assume that the LNA has a noise figure of
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2dB with 20dB gain. The final portion of the receiver includes the mixer and IF of
the receiver, which we assume has a 10-dB noise figure. We use Eq. (1-59) to convert
noise figure to noise temperature.

LNA noise temperature Ty = 290(10%1° — 1) = 162.62K
Receiver noise temperature 75 = 290(10'19 _ 1) = 2610K

The 20-dB (100) LNA gain greatly reduces the effect of the 2610-K receiver. We
calculate the contribution of each device to the input noise temperature by applying
Eq. (1-60) to each device. We pass the noise temperature of the receiver through the
four devices, and its temperature is reduced by the gain of each device:

Ts 2610

Te = =
’ G1G,G3G4  0.955(0.959)(0.891)(100)

=31.98K

The gain of the LNA greatly reduced the effective noise of the receiver at the antenna
input. This operation shows that cascading noise temperature involves passing each
device’s noise temperature through the gains of all preceding devices to the input and
reducing it by the product of their gains. Similarly, we perform this operation on all
the other noise temperatures.

T4 169.62

T,y = = = 207.86K

G1G,G5  0.955(0.959)(0.891)
T 37.92

T3 = = = 41.40K
GG, 0.955(0.959)
7 0

Te = —= — = O

27 G, 0955

T,, =T = 14.65

These operations illustrate that the cascaded devices’ noise temperature equation (1-60)
is easily derived by considering the passage of noise temperature (power) through
devices with gain to a common point where we can add the contributions.

The sky temperature is not an input noise temperature but the noise power delivered
at the fictitious point called the antenna directivity, where gain = directivity. Since
noise temperature represents power, we convert it to decibels and subtract it from
directivity to compute G/T':

G/T(dB) =39 — 101log(345.9) = 13.6dB

This G/T is a measure of the antenna and receiver combined performance when the
antenna is pointed to 5° elevation. Changing the pointing direction affects only the sky
temperature added directly to the final result. We use G/T in the link budget of the
communication system.

We can supply a single value for the antenna gain and noise temperature at the
output port connected to the receiver. Recognize that the first three noise temperatures
and the sky temperature are associated with the antenna. We moved the noise reference
of each device to the input by dividing by the gain of the preceding devices. To move
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to the output of the antenna, we increase the noise temperature and the antenna gain
by the product of the gain for the devices:

T =Ty + Te1 + Ter + Te3)G1G2G3
= (50 4 14.65 + 0 + 37.92)10798/10 = 83 7K
gain(dB) = directivity(dB) — 0.88 dB = 39 — 0.88 = 38.12dB

This reduces the antenna to a single component similar to the directivity and sky
temperature that started our analysis.

1-16 COMMUNICATION LINK BUDGET AND RADAR RANGE

We illustrate communication system design and path loss by considering a sample link
budget example. The 5-m-diameter reflector is pointing at a satellite in an orbit 370 km
above the Earth with a telemetry antenna radiating 10 W at 2.2 GHz. Since the antenna
pattern has to cover the visible Earth, its performance is compromised. Considering the
orbit geometry and antenna pointing is beyond the scope of this discussion. The range
from a satellite at 370 km to a ground station pointing at 5° is 1720 km. The satellite
antenna pointing angle from nadir is 70.3°, and a typical antenna for this application
would have gain = —2 dBiC (RHC gain relative to an isotropic antenna) and an axial
ratio of 6 dB. Assume that the ground station antenna has a 2-dB axial ratio. We apply
the nomograph of Figure 1-6 to read the maximum polarization loss of 0.85dB since
we cannot control the orientation of the polarization ellipses. The link budget needs to
show margin in the system, so we take worst-case numbers. When we apply Eq. (1-9)
for path loss, we leave out the antenna gains and add them as separate terms in the
link budget (Table 1-2):

free-space path loss = 32.45 + 2010g[2200(1720)] = 164 dB

The link budget shows a 4.4-dB margin, which says that the communication link will be
closed. This link budget is only one possible accounting scheme of the system param-
eters. Everyone who writes out a link budget will separate the parameters differently.
This budget shows typical elements.

Radar systems have similar link budgets or detection budgets that consider S/N:

Pec _ PrGr(directivity)2’s  (EIRP)AX(G/T)o

S/N = — -
/ KTB (4n)’R*KTB (4m)3R*K B

The radar has a required S/N value to enable it to process the information required,
which leads to the maximum range equation:

(1-61)

[ (EIRP)AX(G/T)o }1/4
(41)3(S/N)reqK B

Equation (1-61) clearly shows the role of the transmitter, EIRP; the receiver and
antenna noise; G/T'; and the requirement for signal quality, S/Nrq, on the radar range
for a given target size o.

Equation (1-61) applies to CW radar, whereas most radars use pulses. We increase
radar performance by adding many pulses. We ignore the aspects of pulse train encoding
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TABLE 1-2 Link Budget

Frequency 2.2GHz Information only

Transmit power 10 dBW 10 log(10)

Transmit antenna gain —2dB

EIRP (effective isotropic 8§dBW Transmit power dBW + antenna gain dB
radiated power)

Free-space path loss 164 dB Isotropic antenna path loss

Polarization loss 0.85 Maximum for uncontrolled orientation

Atmospheric loss 0.30 5° elevation at 2.2 GHz

Rain loss 0.00 Little loss at this frequency

Pointing loss 0.00

Receive antenna 39dB Location in receiver chain for G/T calculation
directivity

GIT 13.6dB From preceding section

Boltzmann’s constant 228.6dB

Carrier/noise (C/N) ratio 85dB EIRP 4+ G/T — path loss — polarization loss
(ignores bandwidth) —atmospheric loss — rain loss + 228.6

Bit rate: 8 Mb/s 69dB 10 log(bit rate) bandwidth

E,/Ny (energy per 16dB E,/Ny = C/N — 10 log(bit rate)
bit/noise density)

Implementation loss 2dB Groups extra system losses

E, /Ny required 9.6dB For bit error rate (BER) = 10~ in QPSK

Margin 4.4dB E;,/ Ny — required E;/Ny — implementation

loss

that allow coherent addition. Radar range is determined by the total energy contained
in the pulses summed. We replace EIRP with G7(energy) since Pr x time = energy.
It is the total energy that illuminates the target that determines the maximum detection
range. Using antennas in radar leads to speaking of the radiated energy correct for
pulsed systems, but when we do not integrate pulse shape times time, the antenna
radiates power. To be correct we should call radiation that we integrate over angular
space to find power, “power density.” To say “energy radiated in the sidelobes” is poor
physics unless it is a radar system, because it is power.

1-17 MULTIPATH

Multipath means that the field intensity at a particular point is the sum of a number
of waves that arrive from different directions or from different sources. It arises from
signal transmission paths such as edge reflections from the mounting structure around
an antenna and general reflections from objects near the antenna. Nearby reflections
only seem to modify the antenna pattern, while reflections from additional objects
cause rapid ripple with changing pattern angle. In Section 3-1 we discuss how to use
the ripple angular rate and pattern distribution to locate its source. Multipath causes
degraded system performance or measurement errors. Of course, multipath can improve
performance as well. In fact, we add nearby objects, such as ground planes, to improve
antenna performance.

We specify pattern response in terms of the power response, but we add fields. An
extra signal —20 dB relative to the main signal is 0.01 in power but 0.1 in field strength
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Peak-to-Peak Ripple, dB
n

- .o . . . 0 R I A I N R
- o W UN GO 0 < I o 666 6 650 g ©

13
12
10
5
.5
S
5
5

- - = -

12

Mm < N O~ 000 — M < 1N O~ 0o QN MY N
l—\_ﬂ_\_‘_\_‘_oNNNNNNNNN‘Q)mmmmm

. L -
NP Ny o o <
— (4]

~ '] O ~
Interference Signal Level, dB

SCALE 1-8 Signal peak-to-peak amplitude ripple due to multipath signal.

Maximum Phase Error (degrees)
2 w00 0w o AL I ST :
m “caonon o Y -

20
19
18
17
16
15
14
13
12

M T N O N0 O
A N NN N N NN

20
21
22

30

Interference Signal Level, dB
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(voltage). Since the extra signal can have any phase relative to the main signal, it can
add or subtract. Given an extra signal MP(dB), the pattern ripple is

1+ 10MP/20

(1-62)
where MP(dB) has a negative sign. Scale 1-8 gives the relationship between peak-
to-peak amplitude ripple and the level of the multipath signal. Equation (1-62) is
numerically the same as the relationship between return loss and 20 log(VSWR). The
multipath signal can change the phase when summed with the main signal over a range
given by

maximum phase error = + tan~! (10MP/20) (1-63)

Scale 1-9 calculates the peak phase error due to a multipath signal.

1-18 PROPAGATION OVER SOIL

When we position antennas over soil and propagate the signal any significant distance, it
will reflect from soil or water and produce a large multipath signal. Soil is a conductive
dielectric that reflects horizontally and vertically polarized signals differently. Typical
ground constants are listed in Table 1-3. Given the grazing angle ¢ measured between
the reflected ray and ground, the voltage reflection coefficients are

siny — /e, — jx —cos2 (& — jx)siny — /e, — jx —cos2
and p, =

siny + /e, — jx —cos2 (& — jx)siny + /e, — jx —cos2 ¢
(1-64)

Ph =

where x = o/wey = 17, 9750 /frequency(MHz).

Figure 1-9 gives the reflection coefficient for the two polarizations versus grazing
angle. Horizontal polarization reflects from soil about the same as a metal surface.
Vertical polarization reflection produces a more interesting curve. The graph shows
that the reflection is low over a region of grazing angles. The minimum reflection
direction is called the Brewster angle. At this angle the reflected wave is absorbed
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TABLE 1-3 Typical Ground Constants

Dielectric Conductivity
Surface Constant S)
Dry ground 4-7 0.001
Average ground 15 0.005
Wet ground 25-30 0.020
Fresh water 81 0.010
Seawater 81 5.0
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FIGURE 1-9 Average soil reflection for horizontal and vertical polarization.

into the soil. At high grazing angles p, has a phase near 180° and p, a phase of
0°. When the grazing angle decreases and becomes less than the Brewster angle,
the vertical polarization reflection changes from 0° to 180°. Remember that for most
general response nulls, the signal phase changes by 180° when passing through the
transition. As the grazing angle approaches zero both reflection coefficients approach
—1 and multipath is independent of polarization.

The electric field at the receiving antenna is the sum of the direct wave plus the
reflected wave, which traveled along a longer path:

E =E; [1 —exp(—jA¢)] = E4(1 — cos A¢p + jsin Ag)

We compute the magnitude

|E| = |Ed|\/l + cos? A¢ + sin® Ap — 2cos A = 2|E,| sin(Ag/2)

for the small phase difference between the two equal-amplitude signals. The received
power Py is proportional to E2. The path loss for this multipath link is modified from
the free-space equation:

2 ZJThT/’lR

hrhg\>
N PTGTGR< r R) (1-65)

A 2
Prec = 4PT <—) GTGR sin 7

4nd
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Equation (1-65) states that the power received is proportional to 1/d* and increases by
h? for either antenna. We can approximate the propagation over soil by a region for
closely spaced antennas when the results consist of the free-space transmission with
1/d* average transmission with significant variation due to multipath and a second
region proportional to 1/d* with small multipath variations. The breakpoint between
the two models occurs at a distance d = 4hyhg/A.

Experiments at mobile telephone frequencies showed that Eq. (1-65) overestimates
the received power when the receiving antenna height is less than 30 m and a more
correct model modifies the exponent of iy [11, p. 38]:

h2.h
Prec = PrGrGp 2,4R (1'66)
Below 10m, C =1 and the exponent varies linearly between 10 and 30m: C =

hg/20 + 1.

On a narrow-beam terrestrial propagation path, scattering from an object along a
path an odd multiple of A/2 produces a signal that reduces the main path signal. Given
an obstacle at a distance & radial from the direct ray path and located dy from the
transmitter and a distance dg from the receiving antenna, we determine the differential
path length as

h*dr +d A Adrd
=T + Ak =n— or clearance height h = nAdTaR
2 dypdg 2 dr +dg

(1-67)

We call these Fresnel clearance zones of order n. The direct path should clear obstacles
by at least one clearance zone distance % to prevent the scattered signal from having a
negative impact on the communication link. The first Fresnel zone touches ground when
dr = 4hrhg/) is the breakpoint distance between 1/d* and 1/d* propagation models.

1-19 MULTIPATH FADING

Most mobile communication occurs when there is no direct path between the base
station antennas and the mobile user. The signal reflects off many objects along the
path between the two. This propagation follows a Rayleigh probability distribution
about the mean signal level:

2

r r R?
pr(r) = ) exp (——) prob[r < R] = Pr(R) =1 —exp (——)

202 202

R is the signal level, o the value of the peak in the distribution, with mean = a+/7/2
and median Ry = a+/21In(2) = 1.1774«. The median signal level is found by fitting
measured data for various localities (town, small town, open country, etc.) into a
prediction model. The signal will have large signal fades where the level drops rapidly.
The Rayleigh model can be solved for the average distance between fades given the
level. As a designer it is important to realize the magnitude of the problem [12, pp.
125-130]:

2(R/RM)2

er n2)(R/Ry)

average distance between fades =

(1-68)
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R is the fade level (ratio) and R, is the median signal level found from a propagation
model. Scale 1-10 shows the relationship between the average distance between fades
and the depth of fade for Rayleigh multipath. A mobile channel operating at 1.85 GHz
(A = 16.2cm) has a 15-dB fade every 2.751 which equals 44.5 cm, while 10-dB fades
occur every 1.62A = 26.25 cm. The communication system must overcome these fades.
Fortunately, the deep fades occur over a short distance:

2(R/Rw* _
V21 In(2)(R/Ry)

The signal fades and then recovers quickly for a moving user. Scale 1-11 shows the
average fade length along a path given the depth of fade. For the 1.85-GHz channel
the 15-dB fade occurs only over 0.06(16.2) = 0.97 cm, and the 10-dB fade length is
0.109(16.2) = 1.76 cm.

The solution to mobile communication multipath fading is found either in increasing
the link margin with higher gain base station antennas or the application of diver-
sity techniques. We use multiple paths between the user and the base station so that
while one path experiences a fade, the other one does not. Diversity has no effect on
the median signal level, but it reduces the effects of the nulls due to the Rayleigh
distribution propagation.

average length of fade = A
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RADIATION STRUCTURES
AND NUMERICAL METHODS

Antenna analysis, an important part of design, requires a compromise between extensive
calculations and the fabrication and measurement of prototypes, which depends on your
working environment. You should minimize cost, which means reducing the time from
the start of a design to completion of a working model. In some cases you should not
rush to build a prototype. For example, when designing large and expensive antennas,
such as paraboloidal reflectors, the high fabrication cost justifies the time required for
analysis. Management will not let you proceed before knowing the design will work.
You should develop a cost model for each design in which analysis is one factor.

Analyses allow optimization of a design. You can design a number of antennas and
adjust the dimensions until you find the best one. Again, you should be considering
the costs of your time. At some point the incremental improvements are not worth the
extra time for further analyses. In any case, when you build the prototype, you can
expect differences. You soon determine that you can achieve only limited knowledge
about a design because fabrication and measurement errors mask the true response of
the antenna. You are doing engineering, not a science project.

Textbooks contain many analyses of ideal antennas, and this book is no exception.
You need to consider the application and the final antenna environment. The mounting
structure has little effect on the pattern of a large antenna with narrow beamwidth
because little radiation strikes it. The overall radiation characteristics of narrow- or
wide-beam antennas depend significantly on the shape of the vehicle and how the
antenna is mounted. In later chapters we discuss how to use antenna mounting to
improve performance, so you can take advantage of it. The size of the mounting
structure limits the type of analysis used.

In this chapter we discuss physical optics (PO) and geometric optics (GO) [geometric
theory of diffraction (GTD)] for large structures. In physical optics we compute the
current induced on the vehicle due to antenna radiation and include their radiation in the
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overall pattern. But the PO analysis cost rises rapidly as the number of small current
patches increases for larger structures. PO analysis works well with large antennas,
such as paraboloidal reflectors, that produce focused beams. Geometric optics uses ray
optics techniques whose computation cost is independent of the size of the vehicle
and whose accuracy improves as structure size increases. GO provides insight because
we can visualize the combination of direct, reflected, and diffracted (GTD) rays to
calculate the pattern, but it requires the solution of difficult geometry problems.

Smaller structures allow the use of multiple methods. For example, the moment
method divides the surroundings into small patches and uses an expansion of the
current in predetermined basis functions. This method uses integral equations of the
boundary conditions to calculate a matrix equation involving coefficients of the current
expansion. Numerical methods invert the matrix to solve for the coefficients, but it is
a costly numerical operation and limits the size of the problem that can be handled
to a few wavelengths. The finite-difference time-domain (FDTD) technique computes
the fields on the structure in the time domain. This method handles moderate-sized
structures and readily includes complex material properties such as biological features.
FDTD divides the region into cubic cells and when excited by pulse feeding functions,
it produces wide frequency bandwidth responses. Finite-element methods (FEMs) also
divide the problem into cubic cells, but the analysis is performed in the frequency
domain. FEM analysis must be repeated at every frequency of interest. FDTD and
FEMs require a program to divide the structure into a mesh before starting the solu-
tion. Both methods calculate currents on a boundary surface by using the equivalence
theorem with the incident fields and then calculate the far-field radiation pattern from
these boundary currents.

Most methods start by assuming a current distribution on the antenna or, equiva-
lently, a distribution of fields on an aperture. The fields on the aperture can be reduced
to a current distribution. The moment method uses a summation of assumed basis func-
tion currents and solves for the coefficients of the expansion, but it, too, starts with
assumed currents over small regions. You will discover that the radiation pattern can be
found with greater accuracy than the input impedance. For antennas constructed from
wires, the moment method computes the input current for a given excitation voltage
and we calculate impedance from the ratio. Interaction of an antenna with the currents
induced on a structure has little effect on impedance for narrow-beam antennas. Even
for wide-beam antennas, such as dipoles, the structure effect on impedance can be
found by using source mutual coupling with its images. In the end, antenna impedance
should be measured when mounted in the final configuration.

An antenna has both a radiation pattern bandwidth and an impedance bandwidth, but
you must give the pattern primary consideration. Too many designs concentrate on the
wideband impedance characteristics of an antenna when, in fact, the antenna pattern
has changed over the frequency range of the impedance bandwidth. Your primary task
should be to design for the radiation pattern desired. In Chapter 1 we detailed the
system aspects of impedance mismatch (Section 1-10), and you may determine the
overall system impact of small impedance mismatch.

2-1 AUXILIARY VECTOR POTENTIALS

We do not use vector potentials in design. It seems as though they would be use-
ful, but only a few simple antennas fit their direct use. You cannot measure them
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because they are not physical entities, so they seem artificial. Physical optics (PO)
calculates the radiation directly from currents using dyadic Green’s functions but uses
long expressions. Nevertheless, many analysis techniques find them more efficient than
PO expressions and you should be aware of them. We illustrate their use with a couple
of simple antennas.

We use vector potentials to introduce a few antenna concepts. In the first example
we apply the magnetic vector potential to calculate the radiation from a short-length
current element (dipole) and show how to obtain the pattern. Integration of the radiation
pattern power density (Section 1-2) determines the total power radiated. Because we
know the input current and the total radiated power, the ratio of the power to the input
current squared gives the radiation resistance. We combine the low radiation resistance
with the material resistance to compute the antenna efficiency. Electric vector potentials
used with fictitious magnetic currents illustrate analysis by duality. We apply this to the
analysis of a small loop and show that it has the same pattern as that of a small dipole.

2-1.1 Radiation from Electric Currents

Normal electron currents radiate when time varying. The simplest example is a fila-
mentary current on wire, but we include surface and volumetric current densities as
well. We analyze them by using the magnetic vector potential. Far-field electric fields
are proportional to the magnetic vector potential A:

We determine the magnetic field from
|E| = n[H] (2-2)

and realizing the cross product of the electric field with the magnetic field points in
the direction of power flow, the Poynting vector. Since the electric field direction
defines polarization, we usually ignore the magnetic field. We derive the magnetic
vector potential from a retarded volume integral over the current density J:

/ jk|r—r'|
f/ A 2-3)
4Tc|r —r|

where r is the field measurement point radius vector, r’ the source-point radius vector,
w the permeability (4w x 10~7 A/m in free space), and k, the wave number, is 27/A.
As written, Eq. (2-3) calculates the potential A everywhere: near and far field. The
vector potential can be written in terms of a free-space Green’s function:

—jkR

e
R) =
8(R) 4R

A= uf// g(RJ@)dV’ (2-4)

Radiation Approximation When we are interested only in the far-field response of
an antenna, we can simplify the integral [Eq. (2-3)]. An antenna must be large in terms

where R =|r—r|
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of wavelengths before it can radiate efficiently with gain, but at great distances it still
appears as a point source. Consider the radiation from two different parts of an antenna.
Far away from the antenna, the ratio of the two distances to the different parts will be
nearly 1. The phase shift from each part will go through many cycles before reaching
the observation point, and when adding the response from each part, we need only the
difference in phase shift. In the radiation approximation we pick a reference point on
the antenna and use the distance from that point to the far-field observation point for
amplitudes, 1/R, for all parts of the antenna. The direction of radiation defines a plane
through the reference point. This plane is defined by the radius normal vector, given
in rectangular coordinates by

I = sin 6 cos ¢X + sin O sin ¢y + cos 67

We compute the phase difference to the far-field point by dropping a normal to the
reference plane from each point on the antenna. This distance multiplied by k, the
propagation constant, is the phase difference. Given a point on the antenna r’, the
phase difference is kr’ - £. When we substitute these ideas into Eq. (2-3), the equation

becomes
e—jkr o
A=t // yel'rtay’ (2-5)

In rectangular coordinates kr’ - £ becomes
k(x'sin6 cos ¢ + y'sin@ sin ¢ + 7' cos 0)
We can combine k and t to form a k-space vector:
K = kt = k sin 0 cos ¢X + k sin 0 sin ¢y + k cos 07

and the phase constant becomes Kk - r’. Currents in filaments (wires) simplify Eq. (2-5)
to a single line integral. Magnetic vector potentials and electric fields are in the same
directions as the wires that limit the directions of current. For example, filamentary
current along the z-axis produces z-directed electric fields. Spherical waves (far field)
have only 6 and q3 components found from the projection of E, onto those axes.
Filamentary currents on the z-axis produce only z-directed electric fields with a null
from 6 -2 = —sin@ at 6 = 0. In turn, x- or y-directed currents produce electric fields
depending on the scalar products (projections) of the X and y unit vectors onto the 6
and qAS vectors in the far field:

>

X =cosfcos¢ $-%X=—sing

é-?:cos@sin¢ ¢-y=cos¢

By examining antenna structure you can discover some of its characteristics without
calculations. Without knowing the exact pattern, we estimate the polarization of the
waves by examining the directions of the wires that limit the current density. Consider
various axes or planes of symmetry on an antenna: for example, a center-fed wire along
the z-axis. If we rotate it about the z-axis, the problem remains the same, which means
that all conical polar patterns (constant ) must be circles; in other words, all great
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circle patterns must be the same. An antenna with the same structure above and below
the x—y plane radiates the same pattern above and below the x—y plane. Always look
for axes and planes of symmetry to simplify the problem.

We can extend the magnetic vector potential [Eq. (2-1)] to determine near fields:

V(V-A)

E=—jowA+ —
JWEL

H= iV x A (2-6)
I
The electric field separates into far- and near-field terms, but the equation for the
magnetic field, the defining equation of the potential, does not separate. If we substitute
the free-space Green’s function from Eq. (2-4) into Eq. (2-6), expand, and gather terms,
we can determine the fields directly from the electric currents and eliminate the use of
a vector potential.

nk* / J 1 J
ko= [ 10 (<5 - e+ o)
)

N 3 3 .
I - RIR (é TR k31{e3)}ewdv’ &7
k? L (] 1 :
Hr) = — NYxR(|-L + — e /*Rgqv’ 2-8
) 4nf/ 30 x (kR+k2R)e (2-8)
"
r—r _ r—r

R= = since R=|r—7|

Ir — /| R
Terms with 1/R dependence are the far-field terms. The radiative near-field terms have
1/R? dependence and near-field terms have 1/R? dependence. The impedance of free
space, n, is 376.7 Q2. We can rearrange Eqs. (2-7) and (2-8) so that they become the
integral of the dot product of the current density J with dyadic Green’s functions [1].
It is only a notation difference that leads to a logic expression. Except for a few
examples given below, we leave the use of these expressions to numerical methods

when designing antennas.

Example Use the magnetic vector potential to derive the far field of a short-length
current element.

Assume a constant current on the wire. The current density is 118(r"), where 8(r’)
is the Dirac delta distribution and [/ is the length over which the far-field phase is
constant. The integral in Eq. (2-4) easily reduces to

—jkr
A = ulle™’
4mr
The current element is so short that the phase distances from all parts of the element
are considered to be equal; e~/*" is the retarded potential phase term. The electric field
is found from A, using Eq. (2-1):
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Evaluate w as 27 f, split u in /i /i, and divide and multiply by /e:
i I12nf. /ue | ;
Ep = u Ee—./kr sin @
4mtr €
The following terms can be recognized as

1 fool \/ﬁ
CcC = —_ = — = —
JILE c A £

The far-field electric field becomes

The magnetic field is found from the electric field using Eq. (2-2):
_Ey jII

H¢ — e—jkr
n 2Ar

sin 6

The term j can be evaluated as ¢/™/2, a phase shift term. The power density S, is

S, = EJH' = |1]212

6= 12,2 n sin® @

The normalized power pattern is equal to sin?#. Figure 2-1 gives the polar pattern of
this antenna as a dashed plot. The dashed circle is the —3-dB pattern level. We measure

47

the angular separation between the 3-dB points to determine the beamwidth (half-power

beamwidth). For comparison, Figure 2-1 shows the pattern of a half-wavelength-long
dipole as a solid curve. At a length about 5% shorter than a half wavelength, the

reactive component of the impedance vanishes. The figure illustrates that a short dipole
has about the same pattern as a long-resonant-length (reactance equals zero) dipole.

We determine directivity (Section 1-7) by calculating the average radiation intensity,

often normalized to the peak of the power pattern:

n/2 2
Uave =f sin“ @ sinf df = 3
0

Unax =1
U,
directivity = —— = 1.5 (1.76dB)
Uavg

The resonant-length dipole (& A/2) has a directivity of 2.15dB or only 0.39 dB more
than that of the very short dipole. The total power radiated by the antenna is found by

integrating the Poynting vector magnitude over a sphere:

27 T
P,:f f S,r*sin@ do de
0 0
27 T |]|l 2 )
= — ) nsin6dOdo
2w (I
“3\2 )
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FIGURE 2-1 Pattern of a short current element and small loop (dashed curve) compared to a
A/2-long dipole (solid curve) located along the 0 to 180° axis.

We represent the radiated power as a radiation resistance at the input of the antenna:

R P _2m (1Y
R=eE = 3"\
While a short dipole with a length A/20 has a radiation resistance of about 2 €,
a resonant-length dipole has about a 50-Q2 radiation resistance and is more efficient
because the relative material resistance is low.

The input resistance of the antenna is the sum of the radiation resistance and the
resistance due to material losses:

Pn= (Rg + R

The gain of an antenna is the ratio of the peak radiation intensity to the input power
averaged over the radiation sphere:

2
gain _ Sr,peakr . Umax
P TP

47 47

By using the idea of radiation resistance, we rewrite this as

A71tU nax

gain = ———
(Rr + Rp)|I?
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Efficiency is the ratio of radiated power to input power:

P, R I R,

"= P R+ ROIUPE R +R,

Instead of integrating the pattern to calculate the total power radiated, we sometimes
compute the input power of the antenna from currents induced on the antenna elements
by given voltage sources on various terminals of the antenna in analysis:

Py =Re(ViI{) + Re(VL ;) + - - - + Re(Vn 1Iy)
The gain can be found from

5,0, 9 _ U®, )

gain =

P; P;
4n 4m
This method is considerably easier than integrating the radiation intensity to compute

directivity.

By integrating the pattern, we found only the input resistance of the short antenna,
not the reactive component. A short antenna has a large capacitive reactance term
that limits the impedance bandwidth when combined with a match network. The short
antenna has a large pattern bandwidth but a narrow impedance bandwidth. Of course,
an active network could be designed to impedance-match the antenna at any frequency,
but the instantaneous bandwidth is narrow. The moment method of analysis gives us
the currents for given input voltages and calculates the complete input impedance.

2-1.2 Radiation from Magnetic Currents

Magnetic currents are fictitious, but they enable slot radiation to be solved by the
same methods as electric currents on dipoles by using duality. Slot radiation could
be calculated from the surface currents around it, but it is easier to use magnetic
currents to replace the electric field in the slot. Magnetic currents along the long axis
of slots in ground planes replace the electric fields across the slots by application of
the equivalence theorem. Similarly, current loops can be replaced by magnetic dipole
elements to calculate radiation.

We use the electric vector potential F with magnetic currents. The far-field magnetic
field is proportional to the electric vector potential:

We determine the magnitude of the electric field from Eq. (2-2); it is perpendicular
to H. The electric vector potential is found from a retarded volume integral over the
magnetic current density M. Applying the radiation approximation, it is

—jkr L
F=5"¢ [[| Me* av’ (2-10)
d7tr

where ¢ is the permittivity (8.854 x 10™'2 F/m in free space). Equation (2-9) is the
dual of Eq. (2-1), and Eq. (2-10) is the dual of Eq. (2-5). The dual of Eq. (2-3) is valid
in both the near- and far-field regions.
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The magnetic currents in a slot are perpendicular to the slot electric fields: M =
E x fi, where fi is the normal to the plane with the slot. The filamentary currents of
thin slots reduce Eq. (2-10) to a line integral, and magnetic current direction limits the
direction of the electric vector potential and the magnetic field. Since the electric field
(far field) is orthogonal to the magnetic field, the electric field is in the same direction
as the field across the slots. We use the direction of the electric field across the slots
to estimate the polarization of the far field. As with filamentary electric currents, the
far field is zero along the axis of the magnetic current.

The electric vector potential can also be used to derive the near field:

V(V-F
H=—joF + ( )
joue
1
E=—-—-VxF
£

The magnetic field separates into near- and far-field terms in the electric vector poten-
tial; the electric field does not. We can determine the radiated fields directly in terms
of the magnetic currents and avoid using the vector potential:

E(r) = —ﬁ///M(r’)xﬁ L+L A (2-11)
41t kR k2R
V/
k> J 1 J
H(r) = — M) (- —
® = ///[ (r)( kR k2R2+k3R3)
b
+[M() - RIR i+ S 30\ | e gy (2-12)
kR ' K2R K3R3

Equations (2-11) and (2-12) can be rearranged to find the dyadic Green’s functions for
magnetic currents. These differ from the dyadic Green’s functions for electric currents
by only constants.

Example Derive the fields radiated from a small constant-current loop.

We could use the magnetic vector potential and calculate over the currents in the
wire but must account for changing current direction around the loop. Place the loop
in the x—y plane. The electric field radiated by the loop is in the ¢ direction because
the currents in the loop can only be in the & direction. When solving the integral for
the magnetic vector potential, note that the direction of the current on the loop, ¢ ata
general point is not in the same direction as the field point, &, unit vector. The integral
must be solved with a constant vector direction, one component at a time.

Although the magnetic vector potential can be computed, it is easier to replace the
current loop with an incremental magnetic current element. The equivalent magnetic
current element is

I, = joul A

where A is the area of the loop. The magnetic current density is

M=1,15(0"2=joul AS(r)i
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The electric vector potential is found using Eq. (2-10):

F. = jco,ue[Aefjkr
4ntr

The magnetic field is found from this electric vector potential using Eq. (2-9):

2
w‘uelA .
H, = —joF. = 220 ik
4nr
We calculate Hy by projection:
2
A elA _.
Hy=HZ-0= —%e*’k’ sinf
r

Ey and Hy are related in the far field because the wave propagates in the r direction:

w’nel An

E¢ = —T]Hg = e—jkr sin 6

4mr

The small current loop and small current element have the same pattern shape, sin 6,
but opposite polarizations. The directivity is 1.5 (1.76 dB). Figure 2-1 uses a dashed
curve to plot the response of the small loop, while the solid curve gives the pattern of
a half-wavelength slot that radiates on both sides of the ground sheet.

2-2 APERTURES: HUYGENS SOURCE APPROXIMATION

Many antennas, such as horns or paraboloid reflectors, can be analyzed simply as aper-
tures. We replace the incident fields in the aperture with a combination of equivalent
electric and magnetic currents. We calculate radiation as a superposition of each source
by using the vector potentials. Most of the time, we assume that the incident field is
a propagating free-space wave whose electric and magnetic fields are proportional to
one another. This gives us the Huygens source approximation and allows the use of
integrals over the electric field in the aperture. Each point in the aperture is consid-
ered to be a source of radiation. The far field is given by a Fourier transform of the
aperture field:

flky, ky) = / / Ee/*T ds' (2-13)
N

This uses the vector propagation constant
k=kX+k§+k12
ky = ksin6 cos ¢ ky = ksin@ sin ¢ k, = kcos@

where f(k,, ky) is the pattern in k-space. We multiply the Fourier transform far field
by the pattern of the Huygens source:

jefjkr
21

When apertures are large, we can ignore this pattern factor. In Eq. (2-13), f(k,, ky) is
a vector in the same direction as the electric field in the aperture. Each component

(1 4+ cosb) (2-14)
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is transformed separately. The far-field components Ey and E, are found by projec-
tion (scalar products) from f(k,, k,) times the pattern factor of the Huygens source
[Eq. (2-14)].

If we have a rectangular aperture in which the electric field is expressed as a product
of functions of x and y only, the integral reduces to the product of two single integrals
along each coordinate. The Fourier transform relationships provide insight into pattern
shape along the two axes. Large apertures radiate patterns with small beamwidths.
An antenna with long and short axes has a narrow-beamwidth pattern in the plane
containing the long dimension and a wide beamwidth in the plane containing the short
dimension. This is the same as the time and frequency dual normally associated with
the Fourier transform.

We draw on our familiarity with signal processing to help us visualize the
relationship between aperture distributions and patterns. Large apertures give small
beamwidths, just as long time pulses relate to low-frequency bandwidths in normal
time—frequency transforms. The sidelobes of the pattern correspond to the frequency
harmonics of an equivalent time waveform under the Fourier transform and rapid
transitions in the time response lead to high levels of harmonics in the frequency
domain. Rapid amplitude transitions in the aperture plane produce high sidelobes
(harmonics) in the far-field response (Fourier transform). Step transitions on the
aperture edges produce high sidelobes, while tapering the edge reduces sidelobes
and we relate the sidelobe envelope of peaks to the derivative of the distributions
at the edges. To produce equal-level sidelobes, we need Dirac delta functions in the
aperture that transform to a constant level in the pattern domain. Another example is
periodic aperture errors that produce single high sidelobes. When we discuss aperture
distribution synthesis, we see that the aperture extent in wavelengths limits our ability
to control the pattern.

A uniform amplitude and phase aperture distribution produces the maximum aper-
ture efficiency and gain that we determine from the following argument. An aperture
collects power from a passing electromagnetic wave and maximum collectible power
occurs at its peak amplitude response. If the amplitude response somewhere else in the
aperture is reduced from the maximum, that portion will collect less power. The ampli-
tude response can be reduced only by adding loss or reflecting power in reradiation.
The antenna with the highest aperture efficiency reflects the least amount of power
when illuminated by a plane wave. Similarly, if the phase shift from the collecting
aperture to the antenna connector is different for different parts of the aperture, the
voltages from the various parts will not add in phase. Gain is directly proportional
to aperture efficiency [Eq. (1-10)]. Therefore, a uniform amplitude and phase aper-
ture distribution has maximum gain. All this assumes that the input match on various
aperture distribution antennas is the same.

For example, consider the pattern of a uniform aperture distribution in a rectangu-
lar aperture a x b. We use the Fourier transform and ignore the polarization of the
electric field in the aperture. (This assumes that the field has a constant polarization or
direction.)

b/2 pa/2
flke, ky) = Eq / f e/*T dx dy
’ —bj2J—a)2

b2 a2
= EO/ / elf eibY dx dy
—b/2J—ap2
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We separate the integral into a product of two integrals each with the form

e/t dy =

/“/2 elhal2 — =ikl gsin(kya/2)
—a/2 ka B kxa/2

On combining the two similar integrals, we have

ab sin(kya/2) sin(k,b/2)
kea/2 kyb/2

f(kx’ k}) =

where k, = ksinf cos ¢, k, = ksinf sin¢g, and k; = k cos 6 and k = 27 /A. The pattern
in both planes is given by a k-space function, sinu/u. Figure 2-2 plots this pattern
function as a solid curve using k,-space [(ka/2) sinf] as the abscissa to produce a
universal curve independent of aperture size a. The half-power points occur when

sin u 1
=— or u=1.39156

u V2

When we substitute for u, we have in the principal planes

% sinf = 1.39156

By solving for 8, we compute the half-power beamwidth (HPBW):

0.4429)
HPBW = 2sin~! ——=

By using the approximation # = sinu for small angles, the half-power beamwidth can
be estimated as N
HPBW = 50.76°—
a
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FIGURE 2-2 Universal k-space pattern for the radiation from uniform (solid curve) and cosine
(dashed curve) aperture distributions.
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Note that we have ignored the (1 + cos6)/2 pattern of the Huygens source, which
reduces the beamwidth for radiation from small apertures. We discover on Figure 2-2
the pattern nulls occur at integer multiples of 1 and the first sidelobe amplitude is
13.2dB below the peak.

The gain of a uniform amplitude and phase aperture distribution is given by Eq. (1-7),
where A is the area of the aperture. Chapter 4 develops amplitude taper efficiency for
nonuniform aperture amplitude distributions to calculate the gain reduction. Phase error
efficiency gives the gain reduction due to phase anomalies. Each of these is found from
the distribution of aperture fields. Figure 2-2 plots the pattern of a half cosine aperture
distribution as a dashed curve. The distribution peaks in the center and tapers linearly to
zero at the edges. Tapering the aperture distribution widens the beamwidth and reduces
both gain and sidelobe levels. The pattern beamwidth is 1.342 times wider than the
uniform distribution beamwidth. A cosine distribution produces a —0.91-dB amplitude
taper loss, and the distribution edge taper causes the sidelobes to fall off at a faster rate.

Example Compute the length of the aperture with a uniform distribution that will

give a 10° beamwidth.
a 50.76°

PRETE

We can calculate radiated power by integrating the Poynting vector magnitude over

the radiation sphere, but there is an easier way. We assumed that the aperture fields
are free-space waves. The total power radiated is in the aperture,

|E|? P,
P = Tds PavgzUangE

aperture

~ 5 wavelengths

where 7 is the impedance of free space. The radiated electric field is

e 7 (1 4 cos )

E= flky, ky
J o (k. ky)

The Poynting vector magnitude is

_[E]> _ (1+cosh)?

S, = |f(ky, ky))? 2-15
, e ke k)] (2-15)
By combining Egs. (2-14) and (2-15), we determine directivity:
U, S.r?
directivity(@, ¢) = 202 ®) _ S
Uave P./4x

2

// Eel*T gy’
1 0
_ (1 4+ cosb) (2-16)

)»2
/ |E|*ds’

By considering electric and magnetic fields separately in the aperture, we eliminate the
requirement that the ratio electric and magnetic fields are the same as free space used
in the Huygens source approximation. Given the fields in an aperture, we can equate
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them to magnetic and electric currents:
M, =E, xn Js=nxH, 2-17)

where E, and H,, are the aperture fields and n is the outward normal. The equivalence
theorem [2, p. 113] results in exact solutions by using the total aperture field, incident and
reflected. When using the equivalence theorem, we replace the total fields present with
equivalent currents. The induction theorem equates currents only to the incident fields
on the aperture, which ignores wave reflection and results in approximate solutions:

M, e~ /kr-—r1 J e ik
— A= N Y 2-18
8// 47ir — 1’| ds Mf 47r — 1’| s ( )

N

We derive the radiated fields from each distribution of currents by using vector poten-
tials where r is the field point and r’ is the source point in the aperture. These
expressions are valid in the near and far fields. By integrating over only a finite aper-
ture, we assume zero fields outside the aperture, while rigorous expressions require
integrals over closed boundaries. A planar aperture must extend to infinity, but the
fields outside the aperture are nearly zero and contribute little.

2-2.1 Near- and Far-Field Regions

The radiative near- and far-field regions are characterized by the approximations made
to the integrals [Eq. (2-18)]. The radiative near-field region lies between the near field,
with no approximations, and the far-field region. In both approximations the field
(observation) distance r is substituted for |r — r’| in the amplitude term. The vector
potentials reduce to

4nr/ M,e il ds! = 4nr //J Ay @19

We handle the phase term differently in the two regions. First, we expand the phase
term in a Taylor series,

1
e —r'| = ”2+”’2—21"l"=r—f‘-r'+2_[r/2—(f'-r')2]-.,
r

where t is the unit vector in the field point direction. We retain the first two terms for
the far-field approximation and the vector potentials become

€ jkr
n f M,e/*" ds’, etc. (2-20)
nr

where we have combined k, the propagation constant, with the unit vector f:
k = kf = k(sin 6 cos ¢X + sin 6 sin ¢p§ + cos 6Z)

The magnetic vector potential integral parallels Eq. (2-20) as in Eq. (2-19). In the
radiative near-field zone approximation the terms in 7> are retained and we obtain the
following integral for the electric vector potential:

efjkr
F =

N2 22
k-ry & :|ds/ 2-21)

M, k-
/ eXp[’( N+ 2

dntr
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No clear boundary between the three regions exists because the fields are continuous.
Common boundaries are

r <1 near field
L
r L L
l<—<— radiative near field
L A
L
r > — far field
L A

where L is the maximum dimension on the aperture.

Example Determine the maximum difference between the radiative near- and far-field
approximations at a point normal to the maximum aperture dimension when r = L2/
and r = 2L /.

Normal to the maximum dimension, ¥ - ¥’ = 0. The phase difference is

kr,rﬁax h / L
— where =—
2 Fmax = 5
2nL?
phase difference ¢ = T
8Ar

¢p=m/4 at r=L*/r and ¢p=m/8 at r=2L%/r

The usual minimum distance used for antenna patterns is 2L%/A, where L is the
maximum dimension of the antenna. At that distance, the phase error across the aperture
from a point source antenna is m/8. The distance is not sufficient for low-sidelobe
antennas [3] because quadratic phase error raises the measured sidelobes.

We can use vector potentials in the aperture after determining equivalent currents,
but we will find it more convenient to use the fields directly. Define the following

integrals:
f= // E.e/*"ds g= // M,e/*" ds (2-22)

N

using the far-field approximation. Near-field integrals require additional phase terms.
Given an aperture, we calculate the vector potentials in terms of E, and H, through
the currents by using either the equivalence or inductance theorems, and we use the
integrals of Eq. (2-22) in the vector potentials. We combine the fields in the far field
due to each partial source:

E=—jwA — jnoF x t

For an aperture in the x—y plane, we carry out these steps by using the inductance
theorem and obtain the following far fields from the incident aperture fields

jke k" ) .
Ey = J - [ficosd + fysing + ncosO(—g,sing + g, cos )]

— jke Ik
Ey = ———I(fising — f, cos ) cos 6 + (g, cosg + g, sing)]

(2-23)
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where f and g have been expanded in terms of their x- and y-components and 7 is the
impedance of free space.

2-2.2 Huygens Source

The Huygens source approximation is based on the assumption that the magnetic and
electric fields are related as in a plane wave in the aperture:

ngy=fc and —ng.=f,

since
nH,=E, and —nH,=E,

With this approximation, the far field [Eq. (2-23)] becomes

jke—jkl’ .
E, = ; (1 4 cosO)(fx cos¢ + fysing)
W (2-24)
_jke_/kr .
Ey = ————(1 +cosO)(frsing — fycos )
4mr

The two-dimensional vector Fourier transform f = (f, fy) of the aperture electric
field in the x—y plane determines the far-field components. We derive the radiated
components by projecting (vector scalar product) this field onto the vectors 60 / cos 6
and qAb The transform f expands the field in k-space [usually, (k,, k,)]. This normalizes
the pattern and removes the direct dependence on aperture length.

We separate out all but f when we consider aperture distributions. We drop the
terms for the radiation from a point source and the pattern of a Huygens point source
[Eq. (2-14)] and limit our discussions to Huygens sources and far fields. General aper-
ture fields require Eq. (2-23), and for any region other than the far field, additional
phase terms are needed in the transforms [Eq. 2-21)].

2-3 BOUNDARY CONDITIONS

Material boundaries cause discontinuities in the electric and magnetic fields. The effects
can be found by considering either vanishing small pillboxes or loops that span the
boundary between the two regions. By using the integral form of Maxwell’s equations
on these differential structures, the integrals reduce to simple algebraic expressions.
These arguments can be found in most electromagnetic texts and we give only the
results. Conversely, we will discover that artificial boundaries such as shadow and
reflection boundaries used in geometric optics (ray optics) cannot cause a disconti-
nuity in the fields because they are not material boundaries. The idea that the fields
remain continuous across the boundary leads to the necessity of adding terms to extend
ray optics methods. We discuss these ideas when considering the uniform theory of
diffraction (UTD) method used with ray optics.

Suppose that we have a locally plane boundary in space described by a point and a
unit normal vector fi that points from region 1 to region 2. We compute the tangential
fields from the vector (cross) product of the fields and the normal vector. The fields
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can be discontinuous at the interface between the two regions if surface magnetic Mg
or electric current Jg densities exist on the surface.
fix (E; —E|) =-Mg fix (H —Hy) = Js (2-25a,b)
The normal components of the fields change due to the differing dielectric and magnetic
properties of the materials and the charges induced on the surface:
fi-(e2E; — 1E)) = o5 A (uoHy — i Hy) = 7 (2-26)
with pg and 7g given as electric and magnetic surface charge densities, respectively.
Perfect dielectric and magnetic materials can have no currents, which reduces
Eq. (2-25) to
nx(E,—E)=0 nx H, —H;)) =0 (2-27)
Equation (2-27) means that the tangential fields are continuous across the boundary.

These boundary conditions are used in the method of moment analyses to determine
currents. The method applies the boundary condition in integral equations to determine
the coefficients of the expansion of currents in the sum of basis functions. The currents
described as these sums do not satisfy the boundary conditions at all points but do
when integrated over a region. This method leads to approximations that will converge
as more terms are included in the expansions.

When doing analysis we find two types of surfaces convenient. We use these surfaces
to reduce analysis effort by using planes of symmetry. The first one is the perfect
electric conductor (PEC). A PEC surface causes the fields to vanish inside and to have
electric currents induced on it:

nxE,=0 nx H, =Jg (PEC) (2-28a,b)
A PEC surface is also called an electric wall. The second surface is the perfect magnetic
conductor (PMC) and is a hypothetical surface. Whereas good conductors approximate
PEC, there are no PMC materials. The PMC has no internal fields like the PEC and
forces the tangential magnetic field to be zero:
nxE, =—-Mj AnxH,=0 (PMC) (2-29)
A PMC surface supports the hypothetical magnetic current density Mg. We find that
the magnetic wall (PMC) concept simplifies analysis.

b — L~ v = Y-
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FIGURE 2-3 Ground-plane images.
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We use images of currents to include material boundaries in analysis. Figure 2-3
illustrates ground-plane images. When we analyze radiation from currents in the pres-
ence of a boundary, we include the actual antenna and its image to compute the fields.
The figure shows an infinite ground plane, but a finite ground-plane image can be used
in the angular region where a reflected wave occurs in the finite plane. We consider
this idea further when discussing geometric optics. We can use images in dielectric
boundaries provided that we calculate the polarization sensitive reflection coefficients
to adjust the magnitude and phase of the image.

2-4 PHYSICAL OPTICS

Physical optics uses things that can be measured. We can measure both currents
and fields, but auxiliary vector potentials have no physical reality, only mathemat-
ical artifacts that simplify Maxwell’s equations. Nevertheless, the auxiliary vector
potentials provide simple models for problems that enable simple mental pictures,
as shown earlier, but we cannot easily formulate them into a systematic analysis tool
for antenna problems.

The physical optics analysis method combines the use of Green’s functions to calcu-
late fields radiated by a given distribution of currents and then uses boundary conditions
to determine the currents induced on objects due to incident fields. We compute the
effects of a mounting structure by inducing currents on it and adding their radiation to
the antenna pattern. The method assumes that radiation from the induced currents on
the structure does not change the initial currents.

We start analyses from either currents or incident fields and work from those. The
resonant structure of many antennas determines the approximate current distribution that
we normalize to the radiated power. We calculate the fields from these currents. Physical
optics can use an iterative technique to calculate incremental currents induced on the
original radiators and improve the solution, but we usually just sum the radiation from
the original currents to the radiation from the induced currents. The second starting point
for physical optics can be incident fields. These could be plane waves or could be fields
found from the measured radiation patterns of antennas: for example, the pattern of a
reflector feed. We add the radiation from the induced currents to the incident waves.

2-4.1 Radiated Fields Given Currents

The radiated fields can be found from distribution of the electric and magnetic currents
by the use of dyadic Green’s functions that contain source and field coordinates. We
sometimes refer to the Green’s functions as vector propagators or transfer functions
between currents and fields. We calculate the fields from integrals over the source
points of the dot (scalar) product between the dyadic and current densities. The dyadic
Green’s function contains both near- and far-field terms and requires slightly different
expressions for the electric and magnetic fields. The general propagator from electric
and magnetic currents has separate terms for electric and magnetic currents, which
when used with surface patch currents can be reduced to short subroutines or procedures
easily programmed [1]:

E(r) = /GEJ(I', r/)-J(r’)dV’-l-/GEM(r, r)-M@)dV’ (2-30)

H(r) = / Guy(r,v) - J()dV' + f Gum(r, ) - M(x) dV’ (2-31)
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These expressions integrate over the currents located at source points r’ for a dyadic
Green’s function that changes at each field point r and source point r’. Although these
Green’s functions are valid at all field points in space both near and far field, they are
singular at a source point. Only retaining terms with 1/R dependence for the far field
greatly simplifies the expressions.

When fields are incident on a perfect electric conductor (PEC), the combination of
incident and reflected tangential magnetic fields induces an electric current density on
the surface. The fields inside the conductor are zero. We assume locally plane surfaces
on patches and compute currents that satisfy the boundary condition. Given the local
unit normal f to the surface, the induced current density is given by

JS =nx (Hincidem + Hreﬂected)
Hincidem = Hreﬂecled

Js = 2f x Hincigent (2-32)

The reflected magnetic field equals the incident magnetic field because the field reflects
from the conductive surface. The sum of the tangential electric fields must be zero.
Because the reflected wave changes direction, the vector (cross) product of the elec-
tric and magnetic fields must change direction. The reflected tangential electric field
changes direction by 180°, so the tangential magnetic field must not change direction
because the Poynting vector changed its direction. Equation (2-32) is the magnetic field
equation applied on a PEC. Equation (2-25b) is the general magnetic field equation at
a boundary.

Physical optics starts with a given current distribution that radiates, or the measured
pattern of an antenna. When an object is placed in the radiated field, the method
calculates induced current on the object to satisfy the internal field condition. For
example, PEC or PMC have zero fields inside. When we use simple functions such as
constant-current surface patches, the sum of the radiation from the incident wave and
the scattered fields from induced surface currents produces only approximately zero
fields inside. As the patch size decreases, the method converges to the correct solution.
To obtain the radiated field everywhere, we sum the incident wave and scattered waves.
The fields radiated by the induced currents produce the shadow caused by the object.
With geometric optics techniques such as UTD, the object blocks the incident wave
and we determine the fields in the shadow regions from separate diffraction waves.
In physical optics the incident wave continues as though the object were not present.
Only geometric optics techniques use blockage.

We can calculate the fields radiated from antennas in free space or measure them
in an anechoic chamber that simulates free space, but we mount the antenna on finite
ground planes, handsets, vehicles, over soil, and so on, when we use them. Physical
optics is one method of accounting for the scattering. We show in later chapters that
the mounting configuration can enhance the patterns.

2-4.2 Applying Physical Optics

In this book we do not discuss how to develop numerical techniques, but it is important
to understand how to apply methods. Whether you develop your own codes or use
commercial codes, certain rules should be applied. Consider Eq. (2-32). The normal to
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the surface points in the direction of the incident wave: outward. If the normal pointed
inward, the sign of induced electric current density would change. Most codes have
made the assumption that the normal points outward, but some codes may check on
the direction of the normal relative to the incident wave and make the necessary sign
change. We must keep track of the direction of the normal, and it may be necessary
to rotate the normal depending on the expected direction of the incident wave. If an
object can have radiation from both sides, it may be necessary to use two objects in
the analysis.

Many codes store each object as a separate entity in a disk file. In some cases we
need to store an object multiple times. Take, for example, a Cassegrain dual reflector.
The feed antenna illuminates the subreflector and induces currents on it. These currents
radiate and excite currents on the main reflector. When the main reflector—induced
currents radiate, the subreflector intercepts or blocks part of the fields. We account
for this blockage by using a second subreflector object on which the code calculates
a new set of induced currents by using the main reflector currents as the source. We
could add these currents to the existing disk file object or merely keep the second
object. We want to keep the second object separate so that we can calculate additional
currents induced on the main reflector using these currents as sources. These currents
will be reduced from the initial set, but they are an important contribution to the fields
radiated behind the reflector. This example illustrates iterative PO. When objects face
each other significantly, iterative PO is necessary to calculate correct patterns. The
method converges rapidly in most cases.

Figure 2-4 illustrates the geometry of a corner reflector. A half-wavelength-long
dipole is placed between two metal plates usually bent to form a 90° angle. We can
use other angular orientations between the plates, but this is the usual design. The
figure does not show the feed line to the dipole, which usually starts at the juncture of
the two plates and runs up to the dipole. This feed line contains the balun discussed
in Section 5-15. Although the figure shows the plates as solid, many implementations
use metal rods to reduce weight and wind loading.

The analysis starts with assumed currents on the dipole. We divide the plates ana-
Iytically into small rectangular patches, which can be small (= A/8 to A/4) on a side
since it takes only a few to cover the plates. You should repeat the analysis with

FIGURE 2-4 Corner reflector with a dipole located between two flat plates.
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different-sized current patches to determine if the analysis has converged. In a similar
manner, we break down the current on the dipole into short linear segments, each
with constant amplitude. By using a near-field version of Eq. (2-31), we calculate the
magnetic field incident on each patch on the plates. This field induces electric currents
on the plates calculated from Eq. (2-32). Remember that we combine radiation from
the source dipole with that radiated from the induced currents to reduce the radiation
behind the antenna. The currents were induced to satisfy the boundary condition of
the plate, but only with both radiations present. Figure 2-5a illustrates this process of
inducing currents. Figure 2-6 shows the antenna pattern calculated using these currents.
The E-plane pattern drawn as a solid line produces a null at 90° because the dipole
pattern has this null. The plates cause the narrowing of the beam in the H-plane. The
plates reduced the back radiation to —22 dB relative to the forward radiation, called
the front-to-back ratio (F/B). The gain has increased from the 2.1 dB expected from
a dipole to 9.3dB. An equivalent geometric optics analysis uses two images in the
plates, as shown in Figure 2-5b, for the analysis.

If you look at Figure 2-4 or 2-5, you should notice that the two plates face each
other. Currents on one plate will radiate toward the other plate and induce another
set of currents on it. We could ignore these induced currents if the radiation was
insignificant, but to produce correct patterns we must include them. The solution to
this problem calls for an iterative technique where we calculate the radiation from the
currents on the first plate and induce incremental currents on the second plate. These
incremental currents produce further radiation that induces additional currents on the
other plate. The method converges rapidly. Figure 2-7 gives the antenna pattern after
the iterations have been completed and we include radiation from all currents. The
actual F/B ratio of the antenna is 29 dB, and the additional currents increased the gain
by 0.7dB to 10dB. Adding the two plates in the original analysis increased the gain
by 7.2 dB, whereas the iterative technique had a much smaller effect. Figure 2-8 illus-
trates the iterative technique and shows that the equivalent geometric optics analysis
adds a third image to represent the reflection between the plates. Remember when
you mount the antenna in an application, the structure will change the realized pat-
tern, but the high F/B ratio reduces this effect. The mounting structure used when
measuring the antenna changes the pattern as well, which limits our knowledge of the
real pattern.

Image Image

(a) (b)

FIGURE 2-5 Cross-sectional view of a corner reflector: (@) magnetic field radiated from a
dipole induces currents on plates; (b) plate currents replaced with image dipoles.
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FIGURE 2-6 Pattern calculated from a combination of dipole and plate currents in a corner
reflector with 1 x 0.9 plates without induced current iteration.

Physical optics can determine the impedance effects of the limited images in the
ground planes, such as the corner reflector. The local nature of impedance effects
allows the use of images to calculate the mutual impedance effects of ground planes.
We use impedance calculations not only to determine the bounds of ground-plane
effects on input impedance, but to calculate the total power radiated by the antenna.
The images (excited currents on ground planes) radiate but do not receive input power.
A ground plane at least A/2 on a side located about A/4 away from the antenna pro-
duces nearly the same impedance effects as an infinite ground plane, but the ground
plane alters the radiation pattern greatly because it restricts possible radiation direc-
tions.

It has commonly been thought that physical optics could compute the field only in
the main beam pattern direction of a paraboloidal reflector. The method can determine
this pattern region accurately by using only a few patches, each one being many
wavelengths on a side. As the processing power of computers increases, the patch size
can be shrunk until PO can calculate the pattern in every direction, including behind
the reflector. It is important to remember to include the feed pattern behind the reflector
even though its radiation is obviously blocked by the main reflector. Physical optics
uses induced currents to cancel the fields inside objects when the incident fields and
the radiation from the induced currents are added. We can calculate the pattern behind
a reflector using UTD (GTD), the uniform (geometric) theory of diffraction. This
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FIGURE 2-7 Pattern of corner reflector with 1 x 0.9A plates with induced current iteration
equivalent to multiple reflectors between the plates.

Image

(@ (b)

FIGURE 2-8 (a) Wall currents on plates radiate magnetic fields that induce additional currents
on facing plates; (b) added induced currents equivalent to additional image dipole.

geometric optics-based method blocks the radiation from the feed and uses diffractions
from the rim edge to calculate the pattern behind the reflector. We discuss UTD in
Section 2-7. A comparison of UTD and physical optics calculations [1,4] of the pattern
behind shows that the two methods match.

The dashed curve of Figure 2-9 plots the results of the PO analysis of a 201-diameter
centrally fed paraboloidal reflector. The feed antenna radiation tapers to —12 dB at the
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FIGURE 2-9 Physical optics analysis of a 20A-aperture-diameter paraboloidal reflector
(dashed curve) compared to analysis that includes PTD (solid curve).

reflector rim. Figure 2-9 shows the feed power spillover peaking at angles off the
boresight near 100°. PO analysis computes the currents on a patch by assuming that
it is embedded in an infinite plate. The reflector rim violates this assumption and
we need extra terms to calculate the pattern behind the reflector accurately. Adding
PTD (the physical theory of diffraction) to PO improves the match between the two
methods behind the reflector as shown by the solid curve on Figure 2-9. PTD handles
caustic regions of PO in a manner similar to the equivalent current method based
on diffraction coefficients of UTD with geometric optics for shadow and reflection
boundaries. For this example, the additional PTD currents add with the same phase
because of the symmetry of the reflector geometry and produce the maximum effect.
The PTD currents on the rim of an offset reflector will not add and produce a peak
effect behind the reflector but will produce a more defuse effect. We only need PTD
over a limited pattern angular range to reduce error, and the cost of implementing the
fix may exceed the necessity of knowing the pattern in these regions. Similarly, UTD
needs the addition of edge currents for accurate calculation of the radiation near 180°,
behind the reflector. Although any model for the feed pattern can be used with PO,
results matching UTD exactly occur only over all regions of the back radiation when
the feed satisfies Maxwell’s equations in the near and far fields [4, p. 212]. One such
feed is the Gaussian beam approximation. Again, like PTD fixes, the small errors when
using other feed antenna approximations occur only at limited pattern regions that may
be unimportant.

2-4.3 Equivalent Currents

We can relate the concept of equivalent currents to physical optics. In this case we
generate an artificial surface that covers a source of radiation. The incident fields
generate surface electric and magnetic current whose radiation cancels the internal
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fields and generates the external pattern. We use these at the apertures of antennas
such as horns. By using the dyadic Green’s functions we can calculate the near-field
patterns and the coupling between antennas when the assumption is made that the
presence of a second antenna does not alter the aperture fields. Given the outward
normal fi, we calculate the equivalent currents by

i X Eipcigent = —M 0 X Hincident = Js (2-33)

We must use both electric and magnetic current densities on the surface to replace
the internal fields. If the ratio of the electric field to the magnetic field equals the
impedance of free space (376.7 2), the combination of the two currents produces the
radiation of the Huygens aperture source when used with the dyadic Green’s func-
tion. We use equivalent currents for a variety of analyses over flat apertures such as
horns and paraboloidal reflectors, but they can also be used with curved structures or
apertures.

We can, for example, use equivalent currents for calculation of the effects of
radomes. Locally, we assume that the incident waves are plane waves and use boundary
conditions to calculate reflected and transmitted waves. It is necessary to separate the
incident wave into parallel and perpendicular polarizations, the ray-fix representation
discussed in Section 2-7.8. These polarizations have differing reflection and transmis-
sion coefficients. We generate one surface on the inside of the radome and another on
the outside. We use locally free-space waves for the reflected and transmitted waves
lying outside the radome. Both these waves can be replaced with equivalent currents.
The equivalent currents produce null fields inside the radome when combined with
the incident wave radiation [4, p. 155]. Including these equivalent currents in a PO
analysis, we add the effect of the radome.

Equivalent currents can also be used with lenses. We use the incident waves com-
bined with the idea of locally plane waves to calculate reflected and transmitted waves
at each surface and replace them with equivalent currents. We include the dielectric
constant of the lens in the dyadic Green’s functions for the internal radiation of the
lens to calculate the fields at the second surface. We apply locally plane waves at the
second surface to determine the transmitted and reflected rays and then replace them
with equivalent currents. Because the lens has internal reflections, we need to apply
an iterative PO analysis to calculate the multiple reflections between the two surfaces.
The method converges rapidly because the internal reflections are small.

2-44 Reactance Theorem and Mutual Coupling

In Section 1-14 we discussed how the coupling between two antennas can be found
from reactance. Given a transmitting antenna that generates a field at the receiving
antenna, the reactance is described by an integral equation [5]:

reactance = // E-J,—H,-M,)dV = (t,r) (2-34)

The volume integral is over the receiving antenna currents, but it is often reduced
to a surface or line integral. A second form of Eq. (2-34) uses the fields radiated by
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both antennas. Given a surface that surrounds the receiving antenna, the integral for
reactance is taken over this surface:

reactance = //(E, xH, —E, xH,)-ds = (t,r) (2-35)

The differential normal ds is pointed away from the receiving antenna.

When we represent the two antennas and the transmission between them as an
impedance matrix, it implies that we know the input currents to both antennas. By
expressing the coupling as an impedance matrix, we compute mutual impedance from
the reactance integral:

Zip = I—(t, r) (2—36)

Antennas that we describe by input currents only have electric current densities excited
on their surfaces. The mutual impedance formula using reactance reduces to

-1
zo=1p [[ B av (2-37)
L1
v,
The volume integral reduces to a line integral in most cases.

Antennas with given input voltages such as slots can be described using magnetic
currents and we use a mutual admittance matrix for the antenna pair:

1 -1
Yo = - reactance = // H;,-M, dV (2-38)
V.V, V.V,
v,

By using reciprocity antennas made of linear, isotropic materials, we have equal cross-
matrix terms:
Zip =12y and Y=Yy (2-39)

We calculate self-impedance terms by integrating over the surface of the antenna: for
example, the radius of a dipole with the source of the field located at the center of
wires or slots.

2-5 METHOD OF MOMENTS

The method of moments (MOM) [6] expands the currents on an antenna (or scattering
object) in a linear sum of simple basis functions. The approximate solution is a finite
series of these basis functions:

N
fo=)_aif; (2-40)
i=1

We compute the coefficients by solving integral equations to satisfy boundary condi-
tions on the surface of the antenna (or object). The integral equation can be expressed
in the form Lf, = g, where L is a linear operator, usually a scalar product using an
integral, f, the unknown currents given by Eq. (2-40), and g the known excitation
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or source function. We substitute the summation of Eq. (2-40) into the linear operator
equation and use the scalar product integral to calculate the terms in a matrix equation.
The solution of the matrix equation determines the coefficients of current expansion.
The MOM produces filled matrices that require time-consuming numerical methods
for inversion. The art of the MOM is in choosing basis functions and deriving efficient
expressions for evaluating the fields using the basis function currents. Common basis
functions are simple staircase pulses, overlapping triangles, trigonometric functions, or
polynomials.

The method does not satisfy boundary conditions at every point, only over an integral
average on the boundaries. By increasing the number of basis functions, the method
will converge to the correct solution. We need to judge how many terms are required
for an adequate engineering evaluation. Spending excessive time on the solution cannot
be justified if it greatly exceeds our ability to measure antenna performance accurately
using real hardware.

2-5.1 Use of the Reactance Theorem for the Method of Moments

We can use the reactance theorem to generate a moment method solution to the currents
on a thin-wire antenna. Thin-wire solutions assume that there are no circumferential
currents and reduces the problem to filamentary currents. An electric field integral
equation (EFIE) satisfies the boundary condition of Eq. (2-254), a zero tangential field
at the surface of the wires, but it does not seem explicit in the derivation. The reactance
theorem produces an impedance matrix whose inversion yields the coefficients of the
current expansion [7]. Similar to many other methods, the Green’s function has been
solved explicitly to reduce run time. This method [7] uses overlapping sinusoidal cur-
rents on V-dipoles as basis function currents and uses the Green’s function to calculate
the radiation from one V-dipole at the location of a second V-dipole. Both the radi-
ating and receiving dipoles use the same expansion function. Galerkin’s method uses
the same weighting (or testing) function as the basis function and yields the most sta-
ble solutions. The reactance equation (2-37) calculates the mutual impedance between
the two dipoles when each has unity current. We compute self-impedance by spacing
a second V-dipole one radius away and by using the reactance theorem to calculate
mutual impedance, a technique equivalent to the induced EMF method.

The scalar (dot) product between the incident vector electric field and the current
density along the dipole reduces the vectors to scalars that can be integrated. The current
density acts as the testing or weighting function for the method of moments. Performing
the integration means that the current density only satisfies the zero tangential electric
field boundary condition in an average sense. If series impedances are placed in the
V-dipole, their impedance is added to the diagonal elements of the mutual impedance
matrix. To excite the structure, we place a delta voltage source in series with the V-
dipole terminals. The solution for the currents can be found by inverting the matrix
equation and using the voltage excitation vector starting with the matrix equation

After computing the matrix inverse and specifying the input voltage vector, the complex
current values are found on the structure:

(L] = [Znn] ' [Vin] (2-42)
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Given the input voltage and the solution for the currents, the input impedance can
be calculated. Similarly, the far- and near-field patterns can be calculated by using
Egs. (2-30) and (2-31) of the dyadic Green’s function.

The code must satisfy Kirchhoff’s current law at the junction between groups of V-
dipoles, which adds a constraint to the currents. Because an overlapping sinusoidal basis
function closely follows the actual currents normally excited on dipoles, the segments
can be on the order of a quarter-wavelength long or more and yield acceptable results.
Basis functions that closely follow expected current distributions are sometimes called
entire domain functions. These reduce the size of the matrix to be inverted but require
more complicated calculations for matrix terms and radiation. Although the concept
of a V-dipole was expanded to a V rectangular plate [8], the method is only a subset
of general integral equation solutions. This approach generates a simple impedance
matrix formulation easily understood from an engineering point of view.

2-5.2 General Moments Method Approach

The method of moments can solve other types of electromagnetic problems: for
example, electrostatic problems involving charges and dielectrics [9]. These solutions
can determine the characteristic impedance of transmission lines useful in the design
of antenna feeders. All moment method solutions are found from the solution of
integral equations over boundary conditions. The boundary conditions can be either
the tangential electric field (EFIE) or magnetic field (MFIE) conditions given by
Eq. (2-25a,b) or a combination applied using an integral scalar product. We need a
combination for closed bodies near an internal resonance frequency (resonant cavity)
because the solutions exhibit resonances that make the solution invalid over a narrow
frequency range. The method of moments can be applied to dielectric bodies when
we use the constitutive relations of Eqs. (2-25) and (2-26), where the formulations for
dielectric bodies use either volume or surface integrals [9].

Consider the use of the electric field integral equation (EFIE) with metal surfaces.
We expand the currents on the objects using basis functions B,, (r') with coefficients I,,,:

J') =" 1,Bu(x) (2-43)

The basis functions can be applied over a limited range of the structure in piecewise
linear functions, which can be staircase pulses, overlapping triangular functions, or
sinusoidal basis functions, whereas multiple functions can be applied over the whole
or part of the structure for entire domain basis functions. For example, these could be
a sum of sinusoidal functions which form a Fourier series representation.

On a PEC surface the tangential electric field vanishes [Eq. (2-28a)]. At field point
r along the surface S,

i x [Eincident(r) + Escattered (I‘)] =0

M
2-44
Escaltered = Zlm // Bm (I") * G(l', l',) ds’' ( )

m=1

We can only satisfy Eq. (2-44) using a finite sum in the average sense of an integral.
Since the integral and summation operate on a linear function, we can interchange them.
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We introduce weighting (or testing) vector functions tangent to the surface W, (r) and
take the scalar (dot) product of this vector with the sum of electric fields. This limits
the result to the tangential component of the electric field:

/ [Eincidenl(r) ° Wn (l’) + Escaltered (l’) ° Wn (l’)] ds =0 (2'45)
N
We identify the weighted integral of the incident field with the source and weighted
integral of the field radiated by the basis functions (scattered field) as the impedance
matrix terms. The integrals over the boundaries are one form of scalar product rep-

resented by (-) notation. Using unity current on each basis function, we calculate the
matrix terms by using the scalar product:

< // B,,,-G(r,r')ds/,wn(r)> — // // B, -G(r,r') - W,(r)ds' ds (2-46)

_<Eincident(r)a Wn (I')) = - // Eincident(r) * Wn (l’) ds (2'47)

Zmn

Va

The combination of Egs. (2-46) and (2-47) when integrated over each portion of the
source gives a matrix equation:

[Zmn][lm] = [Vn] (2'48)

The weighting functions could be as simple as pulse functions, overlapping triangular
functions on lines or surfaces (rooftop), piecewise sinusoidal functions, or others. The
type of basis functions determines the convergence more than the weighting (testing)
functions, which only determine the averaging. Realize that the moment method con-
verges to the exact solution when we increase the number of basis functions, but it
is a matter of engineering judgment to determine how many terms give acceptable
answers.

Equation (2-47) defines the source voltage occurring over a segment when the for-
mulation uses a piecewise function expansion. The incident voltage is the weighted
integral of the incident electric field. For example, the NEC formulation applies an
excitation voltage across one segment. The reaction integral formulation of Section 2-
5.1 applies a voltage source at the end of a segment. The modeling of sources is an
important part of the art in the method of moments.

The expansion of Eq. (2-44) is only one possible moment method solution. We could
use the boundary condition on the magnetic field, a combination of the electric and
magnetic field conditions on a PEC. If the surface has finite conductivity, the bound-
ary conditions are modified. The moment method is a general method that computes
approximate solutions to the currents. Unlike physical optics, the currents do not have
to be assumed beforehand but are found as a finite series approximation.

Antenna designers discover that adequate codes are available for most problems.
Moment method solutions are typically limited to objects only one or two wavelengths
in size, although any method can be stretched. Analysis of large structures becomes
intractable because of the large amount of computer memory required and the length
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of time needed to calculate the solution. Coarse models may not give totally accurate
results but can be useful in determining trends. Given these ideas, remember that
physical models can be built that solve the electromagnetic problem instantaneously.
We found that it takes considerable time to learn any code, and a new code has to offer
considerable advantages or solve problems that the present one cannot solve before we
invest our time.

2-5.3 Thin-Wire Moment Method Codes

Thin-wire codes that assume only filamentary currents are readily available. We have
experience with NEC, the Richmond code (ASAP), and AWAS [10], a commercial
code. All have advantages, but they take time to learn. A commercial code with a
graphical interface makes the input and output easier: for example, for NEC. These
pay for themselves quickly by saving time. NEC can include plates, but since it uses a
MFIE (magnetic field integral equation) for them, it is limited to closed bodies. When
accuracy becomes important, it is necessary to decrease the segment length and increase
their number. These codes use matrix inversion with calculation time proportional to
N? and a matrix fill time proportional to N2. Run time increases enormously as the
number of segments increases.

The commercial code AWAS determines the segmentation, while the user of NEC
must specify it. The rule is to use at least 10 segments per wavelength, but initial
analysis can tolerate the errors due to using fewer segments. The segments should be
longer than the diameter, and care must be taken that the segments do not overlap
because the radius of the wires is too large. Solid objects, such as plates, can be
modeled as wire frames, with the rule that the perimeter of the wire equal the spacing
between the wires [11]. This rule can be violated, but a test of the convergence should
be made. When we model slots in a solid object, we cannot apply the perimeter equal-
spacing rule because the slot will disappear. These codes compute the radiation pattern
more accurately than the input impedance due to simplistic source models, and we
may have to build the antenna to determine the true input impedance. Of course, an
antenna with a good input impedance response that does not have the required pattern
is useless.

We can reduce NEC run time if the antenna has symmetry with multiple inputs. The
code reduces input by allowing the user to specify symmetry. For example, a multiarm
spiral analysis requires only the input of one arm. The various mode voltages are
entered after the basic structure impedance matrix has been solved. If an object has
M-way symmetry, the matrix fill time is reduced by M? and the solution time by M>.
The various voltage modes can be applied afterward. If we add another wire segment
after specifying symmetry, the symmetry is destroyed and the program uses the full
matrix. The only advantage we gain is in specifying the model because the program
solves the full matrix instead of the reduced matrix.

2-5.4 Surface and Volume Moment Method Codes

Antennas made of plates or containing finite plate ground planes can be solved by using
wire meshing of a thin-wire code. The method of moments code has been extended
to plates [12,13] using a rooftop basis function on both rectangular and triangular
patches. The number of basis functions (i.e., matrix size) grows rapidly. One solution
is to use entire domain basis functions. These require more complicated integrals, but
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they reduce the matrix size. Dielectric portions of the problem lead to either volumetric
integrals or various forms of surface integrals that use equivalent currents to replace the
internal fields [9,14]. These problems lead to a variety of boundary conditions solved
using a finite series of basis function and integral equations to satisfy those boundary
conditions approximately.

MOM analysis of antennas mounted on dielectric substrates requires special tech-
niques. Commercial codes determine the currents flowing on these antennas while
accounting for the dielectric. Often, Green’s functions are found numerically, which
increases the execution time. Since the currents are located on the surface and the
integrals of the boundary conditions are over the same surface, the singularity of
the Green’s function causes a numerical problem. For example, the free-space Green’s
function has the term 1/|r — r’|, which becomes infinite on the surface. Spectral domain
methods remove the singularity by using a sum of current sheets on the surface as an
entire domain basis function. A uniform plane wave propagating at an angle to the
surface excites the current sheet. The actual current flowing on the metal portions
is expanded as a sum of these current sheets [15, p. 208ff; 16]. The uniform current
sheets are expanded in a spatial Fourier transform as well as the Green’s function,
and the MOM problem is solved. The Fourier-transformed Green’s function no longer
has the singularity. When the metallization can be expressed as an infinite periodic
structure, the current is expanded as a Fourier series. The infinite periodic structure is
used with frequency-selective surfaces and infinite arrays. In this case the fields and
currents are expanded in Floquet modes (harmonics).

2-5.5 Examples of Moment Method Models

Figure 2-10 demonstrates the use of a wire mesh to replace a solid plate. We located
a resonant (&~ A/2) dipole A/4 distance over a A-wide ground plane in the H-plane
and offset 3/81 from one edge. This is repeated in Figure 2-20 using GTD analysis.
The rods only run parallel to the dipole because cross wires do not have currents
induced on them in the ideal world of analysis. The circumference of the rods equals
the spacing between the rods and forms an equivalent solid plate. An actual antenna
could use smaller-diameter rods and work as effectively as the solid plate and would
reduce weight and wind loading. NEC analysis produces the same pattern as the GTD
analysis of Section 2-7.2, except that the E-plane size of the rods alters the backlobe
predicted by GTD to some extent, because that analysis assumes infinite-length rods.

\

FIGURE 2-10 Use of a wire mesh to replace a solid plate for dipole over a ground plane in
a MOM calculation.
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Over most of the pattern angles the two analyses produce identical results. The NEC
analysis accounts for the mutual impedance between the dipole and its image in the
finite ground plane. For impedance calculations a small ground plane gives almost the
same reaction to the antenna as an infinite ground plane.

Figure 2-11 shows a wire frame model of a cell phone. The model contains more
wires than necessary for A/10 spacing, but more wires improve the geometry match.
When using crossed wires that shield both polarizations, we reduce the wire circum-
ference in half since the wires approach the squares from four sides. The small wire
antenna must be connected to the wire grid of the model to generate proper currents on
the box. Either we restrict possible locations of the antenna or we must distort the wire
grid locally. You should write an automatic grid generator if you use this analysis often.
Consider that you need to specify whether an edge wire should be generated when two
plates share the same edge. The hand holding the cell phone and the head nearby
have significant effect on the antenna performance. The model given in Figure 2-11
has limited use. We need either a moment method analysis, such as WIPL-D, which
includes volume dielectric structures, or FDTD, which can include complex material
structures to model the head and produce good results.

Figure 2-12 illustrates a wire frame model of an airplane used for low-frequency
analysis. Antennas mounted on free-flying models such as airplanes or spacecraft will
excite the structure. Electrically, small antennas can excite the entire vehicle as an
antenna. For example, a small antenna mounted on a large ground plane that would
produce vertical polarization can excite the wings or fuselage and the entire system will

| N AN AN AN AN AN NI AN
/

R

FIGURE 2-11 Wire frame MOM model of a cellular telephone handset with an antenna con-
nected to the mesh.
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FIGURE 2-12  Wire frame MOM model of an airplane.

radiate horizontal polarization. Models similar to Figure 2-12 can eliminate surprises.
The model restricts antenna mounting locations to the wire positions and may require
local distortions of the grid.

Moment methods can include solid plates. Figure 2-13 shows an open waveguide
horn analysis that uses a combination of plates and a single-feed wire monopole [12].
Locating the monopole or a small dipole inside the waveguide produces excitation of
the waveguide mode that feeds the horn. Even though the model does not necessarily
produce accurate impedance information, the model accurately calculates the pattern
generated by the currents excited in the walls. We can either use an aperture method

FIGURE 2-13 MOM model of a pyramidal horn using flat plates fed by a small dipole.
(From [14, p. 229].)
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(b)

FIGURE 2-14 Use of electric and magnetic walls to reduce the model size in MOM analysis
of a pyramidal horn: (a) PEC wall divides the horn; (b) PMC wall divides the horn.

for the horn that replaces the aperture fields or use the currents excited in the walls
to calculate the pattern. Either method works for the front lobe. The moment method
calculation requires significantly greater calculation time but produces results that bet-
ter match measurements in all directions. Figure 2-14 demonstrates how to reduce
calculation time by using planes of symmetry in a moment method analysis. In this
case the small dipole feed is separated by two equally fed closely spaced dipoles. The
right—left symmetry of the antenna allows reduction of the model by half. A vertical
PMC wall divides the antenna into two parts, with only one remaining in the analy-
sis. A horizontal PEC conductor divides the remaining model in half because halfway
between the dipole feed is a virtual short circuit. Figure 2-14 contains only one-fourth
the size of the original problem. Since matrix inversion requires N° calculations for
an N x N matrix, dividing the analytical model down to one-fourth size reduces this
calculation by a 64:1 factor. This also reduces the matrix element (fill time) calcula-
tions by 16: 1. Reducing the model by using symmetry planes enables the solution of
larger problems and reduces calculation time.

Analyses in later chapters use the moment method to predict antenna performance.
Wire frame and plate analyses determine vehicle and mounting structure pattern effects.
The moment method produces excellent analyses because it determines the approximate
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current distribution as a sum of simple basis functions and we need not start with an
assumed current distribution on the antenna.

2-6 FINITE-DIFFERENCE TIME-DOMAIN METHOD

The finite-difference time-domain (FDTD) method solves the coupled Maxwell’s curl
equations directly in the time domain by using finite time steps over small cells in
space. The method reduces the differential equations to difference equations that can
be solved by sets of simple equations. The method alternates between the electric
and magnetic fields solved at locations a half-step apart because central differences are
used to approximate derivatives. A 1966 paper by Yee [17] described the basic method
that many authors have improved upon, but the original method remains the approach
of choice.

FDTD can solve many types of electromagnetic problems, of which antenna anal-
yses are only one type. Computer memory and speed limit the size of problems that
can be solved, but larger and larger problems can be solved as the cost of computing
keeps reducing. Besides antenna problems, the method is applied to microwave cir-
cuits, biological interaction with electromagnetic waves, optics, and radar cross-section
problems. The number of uses expands every day. The method allows each cell to be
made of different materials, leading to the solution of volumetric complex structures.
The solution of the equations is robust and the errors are well understood.

Currently, the method solves moderately small antenna problems on the order of
a few wavelengths. Of course, faster and larger computers can solve larger problems,
especially if the analyst has patience. FDTD handles microstrip antennas with their
complex layering of dielectrics, including a finite ground plane without the use of
complex Green’s functions required of frequency-domain solutions. The interaction of
antennas with the near environment, such as the effect of the head on cellular tele-
phone handsets, can be solved. In this case the complex electromagnetic properties of
the head can be described as cells each with different electrical properties. In addi-
tion to giving a solution to the radiation pattern and allowing characterization of the
communication system, it can provide insight into the radiation safety concerns of
users. The method handles the solution of the interaction of antennas with the human
body in a straightforward manner for prediction of biomedical applications, such as
electromagnetic heating for cancer treatment.

Learning to apply the technique, whether formulating your own routines or using a
commercial code, will yield insight for design. The method can produce time-domain
animated displays of the fields that show radiation centers and where the fields prop-
agate, but the user must learn to interpret these new displays. It will be worth your
effort to learn this task. The time-domain responses using impulse signals can produce
solutions over a wide band of frequencies when converted to the frequency domain
using the discrete Fourier transform (DFT). The only drawback is the computer run
time required.

2-6.1 Implementation

By using a direct implementation of Maxwell’s curl equations in the time domain,
you do little analytical processing of the equations. No vector potential or Green’s
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functions are developed as in frequency-domain methods. Although the antenna may
be volumetrically complex and contain many different materials, the method yields
sparse matrices rather than the dense matrices produced by moment methods. It is a
direct solution that does not require the inversion of large matrices and includes only
nearest-neighbor interactions. Having only nearest-neighbor interactions means that it
is possible to run problems on parallel machines.

You need to embed the antenna in a rectangular region and divide it into rectangular
cubical cells with sizes ranging from 10 to 20 samples per wavelength at the highest
frequency where analysis is desired. The outer surfaces contain absorbing boundaries
to eliminate reflections that would produce errors. Formulating absorbing boundary
conditions has been a significant part of the method. You need to locate a solution
surface between the absorbing boundaries and the antenna outer surface where we
compute currents by using the equivalence theorem. The DFT of the time response
determines the radiation pattern at a given frequency after the equivalent currents are
found. If you need the pattern amplitude in only a few directions, the time-domain
radiation can be found directly: for example, the gain in one direction.

We can formulate some problems in one or two dimensions if they possess sym-
metry instead of the three-dimensional rectangular cube. The solution time is reduced
dramatically, and the time-animated presentation may provide sufficient insight when
the radiation pattern is found in two dimensions. Because this is a time-domain anal-
ysis, we need to excite the structure with a pulse. You use the pulse frequency power
response to normalize the patterns and compute gain. When the formulation includes
the material losses, the efficiency of the antenna can be found since the dissipation in
the inner cells prevents the radiation from reaching the outer surface.

2-6.2 Central Difference Derivative

Numerical derivatives have greater potential for errors than integrals, but FDTD uses
them to reduce Maxwell’s differential curl equations to simple difference equations. A
second-order accurate formula for a derivative can be found by using central differences
instead of using the difference between the value at a location or time and the value
at the next point in a sequence of evenly spaced points:

of _ fluo+ Au/2) — f(up — Au/2)
ou Au

+ O(Au)? (2-49)

We can use finite differences to solve the curl equations provided that we use electric
and magnetic fields spaced at half intervals because each is related to the derivatives
of the other field and we want to use central differences to reduce error. Because
Maxwell’s equations involve time derivatives, we need to calculate the electric and
magnetic fields at interspersed half time intervals.

2-6.3 Finite-Difference Maxwell’s Equations

Consider Maxwell’s curl equations in the time domain, including lossy materials:

9H 1
== ——(VxE-M+0"H)

# (2-50)
9E 1

= _Z(VxH- E
o 8( x J+0E)
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Equations (2-50) contain the source currents J and M and include losses due to
conducting dielectric material o and magnetic material losses o *. Both equations have
the same form, with only an interchange of symbols. Expanding the curl operator, we
get the following equation for the x-component of the magnetic field:

d0H, 1 (0E, OE, .
=—|\—-—-M,—0%H, (2-51)
ot w\ 9z ay

The x-component of the electric field has the same form but with the interchanges
H—E, E—~ H, M— J, and 6* — o. You obtain the equations for the y- and
z-components by a cyclic variation (repeating pattern of interchanges) x - y — z —
x — y, and so on. For example, the equations are reduced to two dimensions by
leaving out the y-component.

FDTD calculates the field at discrete times and locations on a grid. The fields can
be represented as an indexed function using integers:

f Ax,j Ay, k Az,n At) = f(, j, k,n)

Because we use central differences [Eq. (2-49)], for derivatives, and the magnetic
(electric) field is found from the space derivative of the electric (magnetic) field, the
magnetic and electric fields need to be spaced a half-space interval apart. The time
derivative becomes

of G, jkon) [, jkn43)— fG, jk,n—3)
ot - At

and means that the electric and magnetic components are interspersed at Af/2 times
that which produces a leapfrog algorithm. We substitute these ideas into Eq. (2-51) to
derive the time-stepping equation for one component:

1 —0*(i — 5. j. k) At/2ui — 5, j. k)

L40%( — 3, j. k) At/2u( — 3, j. k)

[Eyu —Lik+gn+D-EG -} jk=—5n+})
Az

HeGi— 3%, j.k,n+1)= He(i—3.j k.n)

E(i—3.j+5.kn+y)—E(—3j—5.kn+3)
Ay

— M. — 5. j.k.n+ %)} (2-52)

FDTD uses similar equations for the other components [18,19].

Yee’s Cell Figure 2-15 shows one cubic cell and the components of the fields. When
we consider the upper face, we see that the magnetic field components are spaced a
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FIGURE 2-15 Unit cell of a Yee space lattice showing time and space separation of electric
and magnetic fields in a cell. (From [15], Fig. 1, © 1966 IEEE.)

half space interval from the central electrical field and the arrows show the direction
of fields. Although it would appear that the electric field is different on the upper and
lower face along the z-axis, the method assumes that the field is constant throughout
the cell. The magnetic fields shown are at the center of adjoining cells.

A leapfrog solution uses stored values of the electric fields to calculate the magnetic
fields at a half time interval later and stores these values. In the second step the solution
takes another half time step and uses the stored values of the magnetic fields to calculate
the electric fields. The method gains stability by using the half time steps and by solving
for both electric and magnetic fields. Although the fields are a half time step out of
synch, we can average between the two half time steps to produce simultaneous fields
at a point, but we only need to do this when calculating equivalent currents on the
surface used for far-field pattern calculations.

2-6.4 Time Step for Stability

You need to pick the time step to produce a stable solution. Consider a plane wave
traveling through the cubes. If the time step is too large, the wave can pass through
more than one cell for each time step. At that point the solution cannot follow the
actual wave propagation and fails. We must reduce the time step until it is less than
the Courant condition or the wave propagation rate. Consider the fastest-moving wave
in the problem, usually free space, and for equal sides to the cube, we compute the
time step from the velocity and cell length:

Ar< BF (2-53)

U < — -
Vvd

The cell length is Ax and the number of dimensions is d. The time step must be lower

for conducting materials (o > 0) to produce a stable solution. The magic step uses
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the equality and produces the most stable solutions. If you pick unequal sides to the
rectangular cell, Eq. (2-53) is modified.

2-6.5 Numerical Dispersion and Stability

FDTD analyses produce solutions that fail to propagate through the cells at the proper
phase velocity in all directions. The propagation velocity depends on the cell size
in wavelengths; it has a frequency-dependent component. You need to consider this
numerical dispersion because it affects accuracy. Because the waves travel at different
velocities in different directions, the dispersion problem increases for large structures
where many time steps must be taken. After many steps, signals disperse because
they have taken different routes and fail to add together in the correct phase. Finer
cells solve the problem, but the computation requirements grow rapidly. The equation
for the propagation constant can be found from considering the FDTD formulation to
produce the following equation for three-dimensional problems:

1 wAN? (1 KA\ (1 K AN (1K Az
sin =|-—sn + | —sm + | —sin—=
c At 2 Ax 2 Ay 2 Az 2

(2-54)
The factor &, is the FDTD propagation constant in the cells along the x-axis, only
approximately the same as k., the actual propagation constant in the structure. The y-
and z-axes have similar problems. If you take the limit as cell length approaches zero,
u — 0, and so on, then sin(au)/u — a. Because At — 0 as the cell size shrinks for

the solution still to satisfy the Courant limit, Eq. (2-54) reduces to the expression

<9>2 = K2+ k2 + k2 (2-55)
c )

Equation (2-55) is the normal propagation constant equation for a plane wave in space
and shows that the cell propagation constants converge to the correct values as the cell
size shrinks. If you formulate a problem in one or two dimensions, you remove terms
from the right side of Eq. (2-54) to determine the dispersion relationship.

Absorbing boundary conditions (ABCs) can cause numerical instabilities. ABCs
approximate infinite space to simulate radiation by the antenna into space. FDTD
problems must be placed in a finite number of cells because each cell requires com-
puter storage. Every FDTD problem uses a finite number of cells for the ABCs with
more cells required in the directions of maximum radiation. ABCs degrade as the
number of time steps increases and eventually leads to numerical instabilities. A lively
research on ABCs has produced good ones, but be aware that most have been found
to produce problems at some point. If you write your own analyses, you will need to
find appropriate ones. Commercial codes will give their limitations.

At one time, ABCs limited solution dynamic range, but ABCs are now available
that produce reflection coefficients from 10™* to 107%. Numerical dispersion limits the
dynamic range as well. Remember that the antenna will be modeled with small cubes
that limit the resolution of the results. The errors of modeling lead to solution errors
that limit the dynamic range.

2-6.6 Computer Storage and Execution Times

The antenna to be analyzed is modeled by a set of cubic cells. Choosing an appropriate
number is an art. Similarly, it will be necessary to have a meshing program. Using a
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two-dimensional model will greatly reduce computer storage and run time. Remember
that our purpose should be to gain insight unavailable from measurements. The calcu-
lations require the storage of three components of both the electric and magnetic fields
in each Yee cell. Because we solve the problem in the time domain, the components
are only real numbers, unlike frequency responses, which use complex numbers for
each component. The material properties of the cells can be indicated with short 1-
byte integers provided that there are no more than 256 different ones. Single-precision
storage of the components requires 30 bytes for each cell; double-precision storage
requires 54 bytes. A three-dimensional problem with 200 cells on a side contains 8 M
cells and would need 240 Mbytes of storage for single-precision and 432 Mbytes for
double-precision components.

At each time step approximately 10 floating-point operations (flops) are needed for
each component in each cell. We must run the time steps until the input pulse has
peaked and died out in each cell. This takes about 10 times the number of cells in the
longest direction (maximum number along one axis). The three-dimensional problem
with 200 cells on a side runs for 2000 time steps and requires 60 flops times the number
of cells. The solution needs 2000 x 8 M x 60 flops = 960 Gflops for completion.

2-6.7 Excitation

We specify the excitation of an antenna in the time domain since FDTD operates in
the time domain. If all we need is a single-frequency solution, a ramped sinusoidal
waveform can be applied. The waveform is tapered from zero in about three cycles and
the FDTD solution steps continue until a steady state is reached. It is more efficient to
use a waveform that gives a wide-frequency-range response after performing a discrete
Fourier transform on the radiating boundary to compute equivalent currents used at a
given frequency. The computer storage and run times are the same for the wideband
response as the single-frequency response.

A suitable wide-bandwidth excitation is the differentiated Gaussian pulse shown in
Figure 2-16:

2 _
Vine (1) = —VoTL exp [—%} (2-56)
p

We calculate the frequency response of the differentiated Gaussian pulse from the
Fourier transform of Eq. (2-56):

21
Vine(@) = —jov2m T, Vo exp [—7(60.5’7)2 ] (2-57)
The spectrum of Eq. (2-57) peaks for w, = 1/7,. Figure 2-17 gives the normalized
frequency response and shows that the —20-dB-level normalized frequency extends
from 0.06 to 2.75. For example, if we wanted to center the frequency response at

10 GHz, the normalizing pulse time is easily found:

1

= —1592x10"s=15.92
= 27(10 x 109) x ° ps

A check of Figure 2-17 shows that the antenna frequency response could be found from
2 to 22 GHz with only a 10-dB loss in dynamic range compared to the response at
10 GHz. A single time response computation yields a wide-frequency-range response.
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FIGURE 2-16 Differentiated Gaussian pulse time response used in FDTD analysis.
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FIGURE 2-17 Differentiated Gaussian pulse normalized frequency response.

A sinusoidal modulated Gaussian pulse produces a narrow-bandwidth excitation
useful in visualization because the bandwidth of the pulse can be controlled:

2
Vine(t) = Voexp [—@] sin wot (2-58)
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The unmodulated Gaussian pulse shown in Figure 2-16 has a low-pass frequency
response:

(2-59)

2
Vine(@) = v27mt, Vo exp [_ (a);p) j|

Figure 2-17 gives the low-pass frequency response of the Gaussian pulse with a —4.37-
dB response at @, = 1/7,. The sinusoidal modulation centers the frequency response
of the Gaussian pulse around wy, and the convolution of the two frequency responses
produces a two-sided response of the Gaussian pulse.

2-6.8 Waveguide Horn Example [19]

The literature contains solutions for the patterns of a number of antennas. Figure 2-18
shows the meshing of a commercial standard gain horn analyzed and compared to
measurement. The horn operates from 8.2 to 12.4 GHz. The horn has a radiating aper-
ture that is 110 mm wide and 79 mm high and a bell length of 228 mm. The 51-mm
length of the input waveguide and the details of the feed probe were included in
the model.

Placing a perfectly magnetic conductor through the midsection of the horn uses
symmetry to halve the number of cells to a uniform mesh of 519 x 116 x 183 Yee
cells. Ten cells were used on the outside for the ABCs around the sides of the horn
and 40 cells for the front ABCs in the maximum radiation direction. The model placed
20 cells between the edge of the horn and the equivalent current surface used for
pattern calculations. The longest side of the grid determined the number of time steps
at 10 times the number of cells = 5190 time steps. The model contains approximately
11 M Yee cells that require 330 Mbytes of computer storage. Assuming that the problem
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FIGURE 2-18 FDTD model of a standard gain horn. (From [17], Fig. 7.17, © 1998 Artech
House, Inc.)
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(a)

(b)

FIGURE 2-19 FDTD calculated electric field in the vertical symmetrical plane of a standard
gain horn: (a) early time with a pulse in the throat; (b) pulse leaving the mouth of the horn.
(From [17], Fig. 7.20, © 1998 Artech House, Inc.)

takes 60 flops per cell for each time step, the solution required 3.43 Tflops of computer
calculations.

The initial calculation used a differentiated Gaussian pulse excitation with 7, =
15.9 ps that centered the response at 10 GHz. The calculation produced patterns that
matched measurements. A second calculation used a sinusoidal modulated Gaussian
pulse with the time constant 79.6 ps. This pulse time constant gives a normalized
frequency of 2 GHz for the Gaussian pulse. The —3-dB frequency is 0.83 times the
normalizing frequency. The pulse is centered at 10 GHz with a 3-dB bandwidth of
3.32 GHz. Figure 2-19 shows the fields when the pulse reached the horn aperture.
Note the high fields in front of the horn and the amount of fields still radiating beyond
and behind the aperture. By using a sinusoidal modulated pulse, the visual display
contains nulls that improve its clarity.

2-7 RAY OPTICS AND THE GEOMETRIC THEORY OF DIFFRACTION

Ray optics can give you a good physical feel for radiation and spur design ideas, but we
need to question the accuracy of their use. Ray optics or geometric optics (GO) methods
come from the design of lens and optical reflectors where the wavelength is very short
compared to the size of the object being analyzed, whereas we may be interested
in analyzing or designing an antenna on a structure only a few wavelengths in size.
Below we show that GO is essentially correct over most of the radiation sphere and
that by using elements of the geometric theory of diffraction [GTD (UTD)], the pattern
prediction can be improved. In this case improvement means that we will increase the
area of the radiation pattern that becomes more accurate. You will discover that it takes
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an increasing amount of effort to improve small areas of the pattern prediction, and
at some point you should decide that it fails to give enough improvement to justify
the work. Your real design purpose is to determine antenna dimensions that produce
the desired antenna response. Of course, as the expense of the antenna increases, your
customer may demand better predictions of the final result, and then the cost of a better
analysis is justified. You need to accept a new approach. Even though a part of the
pattern prediction shows errors, obvious discontinuities, it only means that the pattern
is inaccurate in directions near them and that over most of the radiation sphere the
prediction is essentially correct.

Discussion of this method begins with simple examples given in two-dimensional
space that introduce the ideas behind GO and GTD. These examples can ignore the
details of rotation of polarization directions because the waves are either polarized with
the electric field normal to the page or located in the plane of the page. We consider
radiation blockage by objects, the reflection of rays by the objects, and the diffraction
of rays around edges that fills in the pattern in the shadow regions and across the
boundary of the last reflected ray.

After the discussion of simple examples, the key points of GTD will be given for
use in three-dimensional problems. This involves the rotation of coordinate systems so
that ray polarizations line up with planes of incidence for reflections, with edges for
diffraction and curvature directions on curved surfaces that shed rays around the object
into the shadow. You will need to investigate the references if you want to develop
your own routines, but this discussion will introduce you to the topic and give you
an appreciation of the method so that you can use available computer programs and
understand their limitations.

GO uses ray methods to approximate electromagnetics. It is exact only in the limit
of zero wavelength (infinite frequency), but we gain useful insight from it at any fre-
quency. It will not give good results close to physical boundaries; but when we include
the GTD, the results are accurate down to one-wavelength sizes and are useful at A/4
sizes. GO gives us physical insight when we deal with reflectors. We must consider
three aspects to use GO fully: (1) ray reflections, (2) polarization, and (3) amplitude
variations along the ray path and through reflections.

2-7.1 Fermat’s Principle

Rays travel through a medium at the speed of light determined by the index of refrac-
tion: n = /&, .. We define the optical path length as |, ¢ dl, where C is a prescribed
path in space. Fermat’s principle determines the paths of rays between two points. It
states that the optical path length is stationary along a valid ray path. An expression
is stationary when its first derivatives are zero and the optical path is a minimum (or
maximum). We use Fermat’s principle to trace ray paths through reflection or refraction
by searching for the minimum optical path lengths. We can find more than one possible
ray between points because Fermat’s principle requires only a local minimum. When
we exclude the boundaries of lenses, regions of homogeneous medium, rays travel in
straight lines.

2-7.2 H -Plane Pattern of a Dipole Located Over a Finite Strip

Figure 2-20 illustrates the geometry of this problem and the various regions of the
analysis. The diagram shows the end of the dipole rod with the two rods located
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FIGURE 2-20 GTD example using a two-dimensional model of a dipole located over an
asymmetrical ground plane.

normal to the page. The dipole pattern is omnidirectional in the page with the electric
field directed normal to the page. When we trace rays from the dipole to the finite
strip, we discover two significant directions on both sides of the strip. The dashed
boundaries labeled RB (reflection boundary) are the directions of the last rays reflected
from the strip. Similarly, the dashed boundaries labeled SB (shadow boundary) are the
last rays of radiation not blocked by the strip. The radiation in region I results from
the sum of the direct radiation from the dipole plus the radiation reflected by the strip.
Only direction radiation from the dipole occurs in the two parts of region II. Finally,
region III is totally blocked from any radiation by a direct or reflected ray. This region
receives rays diffracted around the edges.

If we add the direct and reflected rays in an analysis, we obtain the pattern given in
Figure 2-21, which also traces the actual pattern. The pattern, using only the direct and
reflected rays, accounts for the phasing between the direct radiation from the dipole and
an image dipole located below the strip. If you compare the two traces on Figure 2-21,
you see that the two patterns are similar near 6 = 0, but the direct plus reflected ray
pattern has discontinuities at the SBs and RBs. Figure 2-22 gives the results for the
same analysis, but using a 5A-wide ground-plane strip. When using the larger strip, the
two patterns match to about 80°, and in the second case the simple analysis is correct
over most of the forward semicircle. Simple geometric optics gives good results for
large objects provided that you realize the patterns will contain discontinuities.

Removing the discontinuities requires extra effort. A discontinuity in the pattern
cannot exist because shadow and reflection boundaries occur in free space. It takes a
material boundary to produce a discontinuous field. But, for example, the tangential
electric field must be continuous across even material boundaries. Edge diffraction
solves the discontinuity problem. Figure 2-23 gives the pattern of the edge diffrac-
tion for both edges normalized to the total pattern. The edge diffraction has matching
discontinuities to the sum of the direct and reflected rays at the SBs and RBs. The
UTD (uniform theory of diffraction) technique [20, p. 55] calculated these diffrac-
tions. When these diffractions are added to the direct and reflected ray radiation, the
total pattern given in Figure 2-21 is obtained. The dipole, its image in the ground
plane, and the two edge diffractions form a four-element array where each element
has a unique pattern. Adding edge diffractions to the geometric optics fields removes
the discontinuities and allows calculation of the pattern behind the strip ground
plane.
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FIGURE 2-21 H-plane pattern of a dipole over asymmetrical ground using direct and reflected
rays compared only to a full solution for the 1A ground plane of Figure 2-20.
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FIGURE 2-22 H-plane pattern of a dipole over symmetrical ground using direct and reflected

rays compared only to a full solution for a 5A ground plane.

2-7.3 E-Plane Pattern of a Rectangular Horn

Figure 2-24 illustrates the cross section of a horn or, in this case, a two-dimensional
approximation to a horn. The waveguide feeds the horn and produces a uniform aperture
distribution in the E-plane. In this model the direct GO radiation is a constant wedge
signal as shown in Figure 2-25 ranging between —15° and +15°. The reflected pattern
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FIGURE 2-23 GTD edge diffraction of an H-plane pattern for an asymmetrical 1A ground
plane under a dipole.

combines with the direct radiation and produces the same pattern. Figure 2-25 also
shows the diffraction patterns from the two edges. These peak along the plates and
exhibit a discontinuity at the same angle as the GO field. Each diffraction pattern has
a discontinuity on one side at 90° because the mouth of the horn blocks the diffraction
from the opposite edge. When we add the diffracted fields to the GO field, the pattern
shown in Figure 2-26 is obtained. By just adding the three components, we obtain
an accurate pattern of the horn over most of the angles of the plot. At 90° we see
discontinuities in the pattern caused by not considering enough terms in the GTD
calculation. You need to realize that these discontinuities only cause pattern errors at
nearby angles. The majority of the pattern is correct.

We need another term to correct the pattern near 90°. The blockage of the diffraction
from one edge by the mouth of the horn causes a secondary diffraction at that edge.
We call this double diffraction. Some available programs do not implement double
diffraction because the general three-dimensional double diffraction takes considerable
calculation due to the extensive ray tracing required. In these cases you must accept
the pattern discontinuities. Some programs calculate double diffraction as an option,
but turning on this option will slow the calculations. Figure 2-27 gives the pattern
when double diffraction is included. Double diffraction reduces the discontinuity at
90°, but a small discontinuity remains. Adding triple diffraction would reduce this
further, but the pattern area affected by the small discontinuity has shrunk. A new
discontinuity near 60° appeared in the pattern after adding double diffraction at the
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FIGURE 2-24 Geometry of a two-dimensional model of a rectangular horn used for GTD
analysis.

mouth of the horn. We could continue to add another term to remove this one or just
accept it.

2-7.4 H -Plane Pattern of a Rectangular Horn

The tangential electric fields vanish at the walls of the two-dimensional horn in the
H-plane. This affects the GO field and produces the following equation for them:

efij

tan 0
E% = cos -2 f
2tana /R

Equation (2-60) includes the phasing term and square-root spreading factor of a two-
dimensional field. The horn walls tilt from the centerline by the angle «. Figure 2-28
plots the GO field and shows that it vanishes at the walls. We do not expect edge
diffraction because the field vanishes at the edges, but Figure 2-28 shows diffraction
patterns that peak in the direction of the walls.

We call this new term slope diffraction. This new type requires another set of coeffi-
cients not identical to the edge (or wedge) diffraction coefficients. While the amplitude
of the edge diffraction is proportion to the field incident on the edge, the amplitude of
slope diffraction is proportional to the derivative of the field in the direction normal

(2-60)
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FIGURE 2-25 E-plane pattern of a rectangular horn with a GO term (solid curve) and edge
diffractions (dashed curves).

FIGURE 2-26 Combination of GO and edge diffractions in the E-plane pattern of a rectan-
gular horn.

to the edge. We figure the same geometric factors for both edge and slope diffraction
but now must calculate the normal derivative of the incident electric field. Figure 2-29
plots the H-plane pattern of the horn. The pattern fails to predict a pattern behind it.
The E-plane diffraction produces a back hemisphere pattern for a real horn, but our
two-dimensional model does not include the E-plane.

2-7.5 Amplitude Variations Along a Ray

Power decreases in a general ray as the distance from the source increases. If we
expand the constant-phase surface (eikonal) about the ray in a Taylor series, we obtain
a surface described by its radii of curvature [20, p. 55]. The maximum and minimum
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FIGURE 2-27 E-plane pattern of a rectangular horn combining GTD terms of direct GO,
edge diffractions, and double diffractions between edges.

1

FIGURE 2-28 H-plane pattern of a rectangular horn with a GO term (solid curve) and edge
slope diffractions (dashed curves).

values lie in the orthogonal principal planes. These radii of curvature determine the
amplitude spread of the wave from point to point on the ray. We compute the ratio of

differential areas about the ray at two locations as

dA;,

dA; — (p1 +d)(p2 +d)

(2-61)
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FIGURE 2-29 H-plane pattern of a rectangular horn by GTD analysis by combining direct
GO field and edge slope diffraction.

FIGURE 2-30 Astigmatic ray.

where p; and p, are the principal radii of curvature and d is the distance between two
points on the ray (Figure 2-30). The electric field variation along the ray becomes

—j 0102
Ege /K | T2 (2-62)
’ (o1 +d) (o2 + d)
for the astigmatic ray spreading from unequal radii of curvature. When d = —p; or
d = —p,, GO fails because it predicts an infinite power density. We call these locations

caustics. Remember that the ray always has differential area and never has any real
area as implied by Figure 2-30. We have three special cases of the astigmatic ray:

1. Spherical wave, p; = p:
Ege ik P

2-63
p+d ( )
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2. Cylindrical wave, p; = oo:

P

E e—jkd
0 p+d

(2-64)

3. Plane wave, p; = p, = oc: '
Ege~ /% (2-65)

The plane wave does not spread but has constant amplitude as distance changes. Both
cylindrical and plane waves require infinite power, and they are therefore nonphysical,
but we find them convenient mathematically.

2-7.6 Extra Phase Shift Through Caustics

We cannot determine the ray amplitude at a caustic but can determine its amplitude
and phase on either side. Passage through a caustic causes an extra phase shift to
the ray [21, p. 31]. The denominator factors in the square root of Eq. (2-62) produce
a 180° sign change when the ray distance factor d passes through either p; or p,.
The square root changes 180° to +90° (e/™?) or —90° (e~/™?), depending on the
direction of movement along the ray. When tracing a ray moving through a caustic in
the direction of propagation, you multiply by e/™2. The field is multiplied by e~/™/2
for a ray traced in the opposite direction of propagation.

2-7.7 Snell’s Laws and Reflection

We derive Snell’s laws of reflection and refraction from Fermat’s principle. The two
laws of reflection are given as:

1. The incident ray, the reflected ray, and the normal of the reflecting surface at the
point of reflection lie in the same plane.

2. The incident and reflected rays make equal angles with the surface normal.
Implicit in Snell’s laws is the idea that locally the wavefront behaves like a plane
wave and that the reflector can be treated as a plane. Given the direction of the incident
ray S, reflected ray S,, and the reflector normal n, Snell’s laws of reflection can be
expressed vectorially [22]:
nx(S; —S;) =0 n-(S;+S;) =0 (2-66)
We combine Eq. (2-66) to determine the ray directions before or after reflection:
S] = Sz — Z(Sz -n)n 82 = Sl — 2(S] -n)n (2—67)
Snell’s law of refraction can also be expressed vectorially as

l’lX(nzsz — nISI) =0 (2—68)

where n; and n, are the index of refractions in the two mediums.
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2-7.8 Polarization Effects in Reflections

The electric field is orthogonal to the ray direction (a free-space wave) and is described
by a two-dimensional polarization space (Section 1-11). We can describe polarization
in any conveniently rotated two-dimensional basis vectors in the plane with the ray
vector as its normal. We will use a ray-fixed coordinate system that changes direction
after a reflection: _ .

Ei = a’HE,-” + alEu_ (2-69)

where a"'l is a unit vector in the plane of incidence and a’, is perpendicular to the plane

of incidence. We compute a’ from the normal to the plane n at the reflection point
and the incident ray unit vector S;:

ai _ Sl' Xn
* 7 ISixn| (2-70)
afl =a' x§;

After reflection, we calculate the output ray-fixed polarization vectors using the output
ray S,: '
a) =a| and aj=a) xS,

E; is the incident electric field in the direction of afl and E; | is in the direction of ai.
Of course, the direction of unit vector a; changes from incident to reflected rays. The
electric field parallel to the reflector surface must vanish on the conductor surface:

E, =—FE;, 2-71)

where E, is the reflected field along a’, . We calculate the reflection properties of E|
from the corresponding magnetic fields parallel to the surface:

Hy = Hy 2-72)

By combining Egs. (2-71) and (2-72), we obtain the dyadic relation for the ray-fixed

coordinate system:

where E,| and E; | are the reflected field components. At each reflection we rotate the
polarizations to align a;; with the normal to the plane of incidence. We can express
Eq. (2-73) as a dyadic in terms of the incident and reflected wave polarization vectors
R = aflaﬁ — aia’l. Of course, the alternative method is to describe polarizations in a
fixed three-dimensional coordinate system, but it requires a 3 x 3 reflection matrix.

2-7.9 Reflection from a Curved Surface

A wave reflected from a curved surface changes its radii of curvature and principal
planes. The field along the reflected ray is given by

5 PPy —jks
E (s) =ER | — 522 - (2-74)
' 0 \/ (0 +$)(05 +5)
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where s is the distance along the ray from the reflection, p; and p, the reflected ray
radii of curvature, and R the reflection dyadic. E;( the incident ray electric field. For
a flat surface we use images of the incident ray caustics for p{ and pj3, but in general,
py and pj become

1_1(1+1)+1 1_1(1+1>+1 2-75)
pi2\pp e foe 2\p ) S

where f) and f, are generalized focal lengths of the surface. The spreading factor of
Eq. (2-74) simplifies in the far field:

\/ 0} 0 oS

DD

Kouyoumjian and Pathak [23] derived formulas for the focal lengths of a surface. We
start with a surface with principal radii of curvature R; and R, with directions u; and
u, at the point of reflection. For an incident ray with principal axes defined by unit
vectors x; and x, we define a matrix relation between the incident ray and surface
principal curvature directions:

o = ["} WX '“2} (2-76)
XU XU

where the determinant is |6] = (x| «u;) (x5 - up) — (x5 - u;) (X} - wp). Given the angle of
incidence 6', the following are the focal lengths:

1 cost (0222 + 0%, N 63, +0121>

fiz 0P R, R,
2 i
L1 (i_i) +(i_i)4cos@ (0222—9122+6221—0121)
21\pi PP/ 101 Ry R
. 2 12
+4cos2 o' | (65 + 0% N 05 + 00\ 4161 o
0% R, Ry RiR,

With a single reflection, we need not compute the direction of the principal axes. We
need only the focal lengths. Multiple reflections require knowledge of the reflected-ray
principal plane directions. Define the following matrices to determine the directions of
the principal axes after reflection:

1 1
i &
Q(): ! 1 Co = ! 1

0o — 0 —

5 R,

Q" = Qi +20"HTCoo " cosb;

b =x\ —2m-x))n by, =x5—-2(m-x))n
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where n is the surface normal at the reflection point. One principal-axis direction is

r _1 r br _ r br
X = (sz /:01) 1 120> (2-78)

J(@s = 1700 + 032

We derive the other from the cross product of Eq. (2-78) and the reflected ray unit
vector:

X, = =S, x X} (2-79)

We must reapply Egs. (2-75) through (2-79) for every reflection.

We use Egs. (2-75) through (2-79) for analysis, but except for computer optimiza-
tions, they cannot be applied directly to synthesis. If we limit the reflectors to figures of
rotation, the radii of curvature are given by the meridians and parallels and these prob-
lems reduce to two dimensions. Similarly, a cylindrical reflector fed with a cylindrical
wave [Eq. (2-64)] reduces the problem to two dimensions. The incident and reflected
waves remain in the single plane chosen for the reflector analysis.

2-7.10 Ray Tracing

Tracing rays through a reflector system is conceptually straightforward. Where a ray
strikes a reflector, we compute the normal to the surface. By using Eq. (2-67), we
solve for the reflected-ray direction. Equation (2-73) determines the polarization effects
when we express the incident and reflected rays in the ray-fixed coordinates. We use
geometric arguments to determine the amplitude variation along the ray through the
reflection instead of the general expressions given above. We experience difficulty
when we try to discover the reflection points for given field and source points. No
analytical expressions exist for calculating the reflection point of a general surface.
The usual computer routines search for the minimum optical path length (Fermat’s
principle) without using Eq. (2-67), since a local minimum will satisfy this equation.

2-7.11 Edge Diffraction

Keller [24] extended the idea of reflection to edge diffraction by applying a generalized
Fermat’s principle to the rays. Figure 2-31 illustrates the rays in edge diffraction and the
associated polarization directions. The figure shows the edge vector at the diffraction
point. The vector cross product between the edge vector and the incident ray points in
the direction of the incident plane normal. We measure the diffraction angle of incidence
in this plane between the incident ray and the edge normal. Because diffraction obeys
a generalized Fermat’s principle, the diffracted ray exits at the same angle, similar to
the reflected ray angles. The diffracted rays lie in a cone with the edge vector as its
axis. The diffracted rays spread the incident power into a cone. Figure 2-31 shows a
particular diffracted ray and how we determine the diffracted ray exiting plane.

We define diffracted ray polarization in terms of the incident and diffracted planes.
The vectors are parallel and perpendicular to the two planes. Given the edge unit vector
e, you compute the incident perpendicular polarization vector:

ex S

sin By

ay = (2-80)
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FIGURE 2-31 Ray-fixed coordinates related to edge-fixed coordinates at the edge diffraction
point on a curved edge by showing planes of incidence and diffraction. (From [25], Fig. 5, ©
1974 1IEEE.)

where S is the incident ray and B, is the angle between the edge tangent and the
incident ray. The diffracted ray perpendicular polarization is similar to the incident ray

exS

sin By

ay = — (2-81)

where S is the diffracted ray unit vector. We have the following vector relations for
diffraction:

lexS|=|exS'| and e-S=e-.S (2-82)



98 RADIATION STRUCTURES AND NUMERICAL METHODS

We determine the parallel polarization vector along the ray-fixed coordinates by the
following cross products:

ay X aﬂé =S and Ay X ag, = S (2-83)

By using ray-fixed coordinates, the diffraction matrix reduces to 2 x 2.

When By = /2, the parallel polarization components are parallel to the edge and
the electric field vanishes: Eg + Eg, = 0. Acoustics calls this the soft boundary condi-
tion (Dirichlet); it operates on the parallel polarization components. The perpendicular
components satisfy the hard boundary condition (Neumann). At a diffraction point Q,
we describe diffraction by the matrix equation

I:E'%O(S)j| _ [_Dy 0 i| Eﬁé(Qe) P eijk‘v (2-84)
Eg(s) 0 =Du|| E,(Q.) |V s(s+p)
where s is the distance from the diffraction point. Diffraction locates one caustic on
the diffraction point. We compute the second caustic distance p from the incident ray
radius of curvature in the plane of incidence p! and the edge curvature unit vector fi,:
A A
T_L A9 (2-85)
[ a sin” B
where a is the edge radius of curvature. When a — oo (straight edge), the second term
of Eq. (2-85) vanishes.

A number of factors determine the wedge diffraction coefficients. The diffracting
edge factors include (1) the angle between the faces, (2) the edge curvature, and (3) the
curvature of the faces. The ray angle factors are (1) the incident angle relative to the
edge tangent, (2) the diffraction angle to the shadow boundary, and (3) the angle to
the reflection boundary. The diffraction coefficients peak at the shadow and reflection
boundaries. UTD formulation uses characteristic lengths associated with incident and
diffracted ray caustics. These many factors are beyond the current discussion.

2-7.12 Slope Diffraction

The spatial rate of change of the field normal to the edge produces slope diffraction,
an added field component. This ray optics term also satisfies the generalized Fermat’s
principle with geometry determined by Eqs. (2-80) through (2-83), and (2-85). The
slope diffraction equation has the same form as Eq. (2-84):

E;fo(s) | —es 0 E};{/](Qe) 1% —jks i
[E;fm}‘[ 0 —eh}[E;/(Qe)}\/rﬁLp)e (250

where the diffraction coefficients e, are related to the field derivative normal to the

surface:
1 0D,y 0
esh=——"——">\———— (2-87)
’ jksin By \ d¢’ on’

The term d/0n’ of Eq. (2-87) indicates the derivative of the incident fields given in
the vector of Eq. (2-86). Equation (2-87) has the term 9 Dy ,/d¢’ for the soft and hard
slope diffraction terms returned from a subroutine; it is only a notational derivative.
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2-7.13 Corner Diffraction

Every structural discontinuity diffracts waves. We derive edge diffraction from an
infinite wedge where the wedge terminations (corners) produce diffracted rays. Recall
from Section 2-4.2 that PTD added currents at edges to handle the effect of not having
an infinite surface; the formulation for corner diffraction uses equivalent currents to
derive these coefficients. We handle edge diffraction from each edge as always. Since
each corner arises from two edges, we compute separate corner diffraction for each
edge, two terms per corner.

Whereas edge diffraction is bound to a cone, corner diffraction radiates in all direc-
tions. The edge must be visible from both the source and receive points before corner
diffraction contributes. We must include corner diffraction in any three-dimensional
problem. As the source and receiver become farther and farther away from the object,
corner diffraction contributions dominate over edge diffractions since it is derived from
equivalent currents.

2-7.14 Equivalent Currents

GTD fails to predict fields at caustics. In many cases we consider these points unim-
portant, but for those cases where we need the fields, equivalent currents provide the
answer. We derive equivalent currents from edge diffraction, which then replaces it
and we use them instead of edge diffraction for all pattern points. The use of currents
reduces the problem to a PO solution and line integrals are required.

We relate the incident fields expressed in the ray fixed to equivalent currents:

2 .
I = _i E% Dv/2mk /™4 (2-88)
]7 0
27 . .
M= %E;()Dh\/an I/ (2-89)

The soft and hard diffraction coefficients D;j; depend on the source and receiver
positions. Since we calculate the fields using vector potentials or dyadic Green’s func-
tions, the formulation has no caustics. They are only associated with a geometric
optics solution.

Equivalent currents allow the calculation of the fields directly behind a reflector near
the axis. The GTD solution produces a caustic as all points along the rim “light up”
for an axisymmetrical design. PTD uses equivalent currents in a similar but different
way to calculate correct fields in the same region. Equivalent currents derived from the
diffraction coefficients produce the entire solution, since the reflector blocks the incident
field. In PO we continue to include the direct field and the induced current radiation
on the reflector, but add the PTD current radiation. Realize that slope diffraction also
adds to the equivalent currents.

2-7.15 Diffraction from Curved Surfaces [26, 27]

In one analytical approach to surface-wave radiation we postulate waves bound to a
surface that radiate only from discontinuities. Surface waves on infinite structure do not
radiate but attenuate exponentially away from the surface, because they are bound to it.
We can formulate GTD as radiating from discontinuities, and this produces an approach
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for fields radiated on the shadowed side of a curved body. The continuous discontinuity
of the curved surface causes power to be radiated at every point in the shadow region.
These waves radiate tangentially from a wave traveling along a geodesic and bound to
the surface. Surface waves require a dielectric coating or a corrugated surface to slow
and bind the wave to the surface. The surface curvature slows and binds the wave to
the surface without the need for a dielectric or corrugated surface coating. The wave
that propagates along the surface sheds power in rays tangentially to it.

The rays travel along a surface geodesic from the attachment point to the radia-
tion point. The geodesic curve is a minimum distance path on the surface between
two points. In differential geometry it has a broader meaning, but for our purpose,
the minimum distance definition will serve. The curved surface diffraction satisfies
a generalized Fermat’s principle (minimum distance) as do all other terms of GTD.
The best approach uses another ray-fixed coordinate along the surface where the vec-
tors are normal and tangential to the surface at both the attachment and radiation
(shedding) points.

Curved surface diffraction considers three types of problems with different formu-
lations. Two of them start with an antenna mounted on the surface. We either calculate
the pattern in the presence of the curved object or calculate the coupling to a second
antenna also mounted on the curved object. The third case determines the field scattered
for a source located off the surface. All three use the ray-fixed coordinates. We start
with the surface normal fi and the tangent vector t directed along the geodesic path.
A vector cross product defines the third direction of the local coordinate system. We
use the surface binormal b, and the three vectors form a triad: i x b = f. On a general
surface all three vectors change direction as the wave moves along the geodesic. We
use the term torsion for a path with a changing binormal. A soft dyadic diffraction
coefficient is used with fields aligned with the attachment point binormal and the tan-
gential shedding point binormal. We apply the hard dyadic diffraction coefficient fields
aligned along the normal vectors. No formulas exist for computing the attachment and
shedding points on a general curved surface given the source and receive points. We
usually start with a known diffraction and find other points by incrementing along the
curve by small steps.
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ARRAYS

We begin with arrays of antennas before discussing particular antenna elements to show
the relationship between antenna size and shape and the resulting pattern characteristics.
We ignore the feed network design initially and assume that the proper array feed distri-
bution will be obtained. At first, we assume a distribution of point sources and compute
the approximate array pattern. Working with simple models provides insight rather
than accuracy, and later we consider element pattern and interaction. In Chapter 12 we
discuss feed network design and analysis in the discussion of phased arrays.

The chapter begins with a mathematic description of an array and gives various
assumptions used to simplify the expressions. We analyze a simple two-element array to
gain insight into the radiation phenomenon and how far-field patterns can be found with
simple arguments. The discussion of a uniformly spaced linear array shows the Fourier
series relationship between array layout and the pattern space given in sin(angle) space.
The principal idea is that pattern beamwidth shrinks as the array length increases. If
we space the elements too far apart, multiple beam peaks or grating lobes form in
the pattern, and we show how to control these grating lobes and their relationship to
maximum scan angle, array layout, and element spacing.

Phased arrays scan the beam by controlling the relative phasing between the ele-
ments. We extend the linear array to planar layouts that produce narrow beams in both
principal planes. The planar array design is unchanged from the methods for linear
arrays, but the grating lobe analysis shows their unique properties, as they sometimes
form outside the plane of scan. We can divide the phased array into pieces to form
multiple scanning beams, but the beam shape is determined by the segment size and
shape used for each beam. By adding amplitude control the phased array can form
multiple beams with beamwidths determined by the entire size of the array.

Each element in an array receives a portion of the power radiated by the other
elements on transmittal, or scatters power into neighboring elements in reception. The
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radiation from each antenna excites currents on its neighboring elements that also
radiate, and we associate the total pattern with the antenna input. In an array the
effective element patterns change due to this scattering. Because of reciprocity, which
says that transmit and received patterns are identical, we can analyze the problem
either way. This leads to mutual coupling, which we describe and analyze by mutual
impedance (admittance, or scattering) matrices. This phenomenon causes the input
impedance of the elements to change as we scan the array. The mutual coupling can lead
to scan blindness when the feed reflection coefficient grows due to mutual coupling, and
the array totally reflects the signal into the feed network. If we want the exact pattern
designed for, we must compensate the feeding coefficients for the mutual coupling.

A discussion of array gain gives two methods of calculation. First, the effective area
and the associated gain of a planar array cannot exceed its area when we include the
extra half-element spacing area provided by the edge elements. When we space the
elements so that their individual effective areas no longer overlap, array gain is the
element gain multiplied by the number of elements. We can calculate gain by adding
up the input power instead of integrating the pattern to compute total radiated power.
We relate input power of elements to the self- and mutual resistances to determine gain
of linear and planar arrays using realistic elements. The chapter ends with a discussion
of three-dimensional arrays using arbitrarily oriented elements. We add this analysis
to the simple array formula to handle the polarization of rotated antennas. Related to
this problem is the pointing of an antenna on a positioner. We apply rotation matrices
to both problems.

An array radiates or receives from two or more antennas at the same frequency. To
calculate the field radiated from arrays we add the electric fields radiated from each
element. The amplitudes and phases of each antenna, determined by the feed network,
give us extra degrees of freedom to shape the pattern and design shifts from radiating
elements to the feed network.

A single antenna radiates an electric field with both polarization components:

E = E,0.0)0 + E4(0, )

where Ey and E,4 are the two complex components (amplitude and phase) referred
to some point on the antenna. If we move the antenna or the phase reference point,
we only change the antenna radiated phase. We assume that the movement is small
enough that the radiation approximation can still be used. Given " as the location of
the antenna relative to the phase reference point, the added phase component is /¥,
where kK = 27t/A(sin 6 cos ¢pX + sin O sin ¥ + cos6Z) and v’ = x'X + y'§ + 7'Z is the
location of the antenna; k - 1’ is the phase distance from the antenna to the reference
plane through the reference point and is defined by the radiation (receiving) direction.
The electric field radiated from the moved antenna becomes

[Eo(0, )0 + E4(0, p)dle’*™

We assume that nearby objects do not alter the patterns in the movement, but we can
alter element patterns if necessary.

Suppose that we have an array of antennas located at points r’y, 1/, and so on. We
obtain the total pattern by adding the electric fields radiated from each:

N
E = [Es(0, )0 + Egi(0, p)ple’ ™ (3-1)

i=1
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Bringing the antennas close together will change the patterns of each because every
antenna will block the radiation of the others and the distribution of currents on the
elements may be changed. The shape of small resonant antennas limits the possi-
ble distribution of currents, but the magnitude and phase may be changed due to
the coupling.

We make various approximations to Eq. (3-1). Changes in the patterns due to nearby
antennas are ignored, and isolated element patterns are used. We assume initially a
certain amplitude and phase distribution on the elements and ignore the problem of
the feed network. Polarization reduces to a single term for equally polarized elements,
such as dipoles, slots, or horns. If the antennas have identical element patterns, we can
separate Eq. (3-1) into a product.

E =[E)(6,$)0 + Ey(0, $)$1 ) Eie/*™ (3-2)

where Ey and Ey4 are the normalized patterns of the single element. E; is the electric
field of the ith element, including the amplitude and phase of the feed distribution.

Equation (3-2) describes pattern multiplication that separates the pattern into an
element pattern and an array factor. The method requires that all antennas have the same
pattern and be orientated in the same direction. The array factor represents the pattern
from an array of isotropic pattern antennas. Because array factors can be calculated
by hand, we find them useful for gaining insight. We leave calculations using Egs. (3-
1) and (3-2) to the computer. The element patterns themselves could be arrays and
we could use pattern multiplication to synthesize planar and volumetric arrays from
linear arrays.

3-1 TWO-ELEMENT ARRAY

Consider two elements lying on the z-axis and spaced a distance d centered on the
origin (Figure 3-1). If we rotate the isotropic pattern antennas around the z-axis, the
problem remains unchanged, which means that all great-circle (constant ¢) patterns
are identical. On the z-axis, the element phase constant becomes e/¥ ¢  For simple
line arrays we can locate pattern nulls and peaks by simple arguments.

Example Two elements are spaced A/2 and have equal amplitudes and phases. Locate
the nulls and peaks.

The phase reference planes can be placed at any convenient point. Consider the
pattern at 6 = 90°. We place the reference plane through the axis of the array. The
added phase factor is zero for both elements and we just add components. The equal
element phases add to give a beam peak. If we place a second reference plane through
the top element, the wave radiated from the bottom element travels across the array
A/2 to the reference plane. Increasing the distance propagated decreases phase and it
changes by —180°. The two out-of-phase signals cancel to produce a pattern null. The
array has symmetry about the x—y plane, which means that the array will have the
same pattern above and below the symmetry plane. We denote this configuration an
even-mode array. Figure 3-2 plots this pattern with a solid line. You should repeat
the example for an odd-mode array (phases 0° and 180°) and convince yourself that
the null occurs at & =90° and the beam peak occurs at & = 0° (180°), plotted in
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Radiation

Reference plane

-d/2

FIGURE 3-1 Two-element array on a z-axis.

Figure 3-2 as a short-dashed curve. The solid and short-dashed curves have the same
directivity.

Example Suppose that the two elements are spaced A/4, with the top element phase
—90° and the bottom element phase 0°. Locate the beam peak and pattern null.

We start by placing a reference plane through the top element. The wave radiated
from the bottom element travels across the array, and its phase decreases by 90°. Both
radiated waves have the same phase (—90°) at the reference plane and add in phase
for a beam peak. Consider a second plane through the bottom element. The wave from
the top element loses 90° propagating across the array and the two waves are 180° out
of phase and cancel for a null.

The second example is an end-fire array. Figure 3-2 illustrates the end-fire pattern
with a long-dashed curve. All three patterns on the figure have the same directivity.
The phase distribution of an end-fire array matches those of a wave traveling in the
direction of the maximum. In these examples unequal amplitudes would limit the null
depth to the difference. Varying the element phases while maintaining equal amplitudes
changes the null directions.

Consider a general two-element array with equal amplitudes and a phase difference
between them. We split the phase shift into equal parts. The top-element phase is
—4&/2 and the bottom-element phase is §/2. When we apply Eq. (3-2) with an isotropic
element pattern, we obtain the following electric field using Euler’s identity:

nd 8\ e Ik
E©)=2Eycos| — cosf — — (3-3)
A 2 r
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FIGURE 3-2 Two isotropic element array pattern: even-mode A/2 spacing (solid curve);
odd-mode A/2 spacing (short-dashed curve); end-fire A/4 spacing (long-dashed curve).

0 is measured from the z-axis. If we spaced the elements along the x-axis and found
the pattern in the x—z plane, we substitute sin 6 for cos 6 in Eq. (3-3). In Chapter 4
we sample continuous distributions and position the elements along the x- or y-axis.
Pattern peaks occur when the argument of the cosine is nw, the nulls when it is
2n — D7/2.

o ) (3-4)
€08 Opax = | BT+ = -
2) nd
m 5| A
null = 2n — 1~ Al =5 -
€08 Bnun |:(n )2+Zi| ~d (3-5)

If we subtract either Eq. (3-4) or (3-5) evaluated at two peaks or nulls, we get the
same equation:

A
cosf; —cost, = (n; — nZ)Z (3-6)

Figure 3-3 illustrates the pattern of an equally phased two-isotropic-pattern-element
array spaced 5A along the z-axis. Because array symmetry makes the patterns on the
right and left sides the same, we consider only one side. The wide element spacing
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FIGURE 3-3 Two-isotropic-element array-spaced 5\ pattern (solid curve); added central ele-
ment 10dB higher power than array (dashed curve).

allows six solutions to Eq. (3-4) from 0 to 90° for the pattern peaks and five solutions
for Eq. (3-5) over the same range for the nulls because the magnitude of cos 6 is
limited to 1. We call the multiple beams grating lobes. We usually choose the main
beam and call the others grating lobes, but they are just all lobes of the array. Figure 3-3
shows that we must space the elements close together to prevent grating lobes. With a
greater number of elements in the array, the amount of beam movement due to element
phasing adds another factor to the prediction of when grating lobes form. The amount
of phase scanning determines the maximum spacing allowed without the formation
of grating lobes. The n = 0 lobe forms at § = 90° and we compute the n = 1 mode
direction from Eq. (3-4): § = cos™! (%) = 78.46°. When we substitute these angles into
Eq. (3-3), we calculate a relative phase of 180° between them. The lobes have a phase
of zero for n even and 180° phase for n odd in the far-field approximation. Remember
we remove the exponential and 1/R factors from Eq. (3-3) for the far-field pattern. The
actual phase of any real point depends on the distance from the center of the array.
The dashed curve in Figure 3-3 shows what happens if we add the array pattern to
an isotropic radiator in the center. For a peak response of the array —10dB relative
to the isotropic antenna, we get the 5.7-dB peak-to-peak ripple shown by using Scale
1-8. The array pattern either adds or subtracts from the isotropic radiator pattern. The
angular ripple rate is half that of the array lobes. Below we see that a two-element array



108 ARRAYS

spaced at an integer multiple of A/2 has a 3-dB greater gain than a single element. We
feed half the power of the array into each element. By adding these factors we calculate
the array element level to be —16dB below the main central radiating antenna.

When we mount an antenna over a finite ground plane, the diffraction from the edges
creates a two-element array. A SA-wide ground plane would produce the same pattern
ripple angular rate as shown in Figure 3-3. You will often observe a similar-amplitude
ripple in measured antenna patterns. Note the minimum angular distance between the
peak and minimum responses in the pattern. The extra signals occur along the line in
the pattern plane perpendicular to this direction. Use Eq. (3-6) to determine the distance
between the array elements and you should be able to identify the structure causing the
ripple. The scattering point could be on the test fixture. Consider whether the mounting
structure will be different in the final configuration. You can calculate the effect from a
single diffraction point by forming an array using the baseline of the primary radiator
and the diffraction point. Both configurations produce the same angular ripple rate.
The ripple peak occurs along that array axis, but Figure 3-3 shows that the angular
ripple rate will be reduced along this end-fire direction of the 6 = 0 axis. If you make
a careful consideration of the angular rates, in various pattern planes, you should be
able to discover the cause. Always consider unexpected sources of diffraction.

You can consider the ripple using its beamwidth. To produce a symmetrical pattern
about zero, we use sin 6 instead of cos 0 in Eq. (3-3), which means that the array lies
along the x-axis. The —3-dB angle for the two-element uniform amplitude array can
be found from Eq. (3-3):

nd . T L A

T S 93 dB = Z 93 dB = SIn m (3—7)
The beamwidth is twice Eq. (3-7). For large d we can approximate sin X ~ X and
beamwidth = 1 /2d. The 5\ spaced array has a beamwidth of 5.7° (0.1 rad). We can
look at a 5A-wavelength ground-plane example that has a large-amplitude element
compared to the edge diffraction as two 2.5\-spaced two-element arrays where one
element has a high amplitude. Each two-element array produces a pattern with an
11.4° beamwidth the value of the composite pattern in Figure 3-3. We often mount an
antenna in the center of a ground plane for measurement and observe patterns similar
to Figure 3-3. If in the actual application the antenna is mounted off center, we need
to add the patterns of arrays formed on both sides of the finite ground plane. The final
pattern will be the composite pattern from each array and be more complicated than
the simple case given above.

We calculate average radiation intensity by an integral:

4E2 /2 d S
Ue = —2 [ cos? (”— cos 6 — —) sin 6 do
n Jo A 2

The directivity is
Umax _ |2Emax | 2
Uwg 14sin2nd/1)cosé/(2nd /1)

(3-8)

where Ep,x = cos[(7td /) cosOmax — 6/2]. Whend > A/2, Eq.x = 1. Figure 3-4 shows
the directivity versus spacing for the special cases § = 0° and § = 180° (even and odd
modes). The directivity varies because each antenna receives power from the other. The
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FIGURE 3-4 Directivity of even- and odd-mode two-isotropic-element arrays.

combination of the input power and the power transferred between elements changes
with spacing.

3-2 LINEAR ARRAY OF N ELEMENTS

Suppose that there are N isotropic radiators equally spaced along the z-axis and fed
with equal amplitudes. We assign a fixed phase shift § between progressive elements.
The array factor field is

sin(Nr/2)

N sin(y/2) (3-9)

where ¢ = kd cosf + § [1, p. 258]. We use this to plot a universal radiation pattern for
the array (Figure 3-5) for two to 10 elements. The abscissa v is plotted in degrees (360°
is substituted for 27 in k). Both ends of the plot are lines of symmetry. The plot is peri-
odic (period 360°). We see that the level of the first sidelobe (N = 2 has no sidelobe)
decreases as N decreases but approaches a limit of 13.3 dB of the continuous aperture.

Figure 3-6 demonstrates the periodic pattern for N = 6 and shows a projection to a
polar pattern when the progressive phase between elements is zero and the elements are
spaced A/2. We can plot similar curves for other array distributions; all have a period
of 360°. Figure 3-6 illustrates the use of a circle diagram, a method of constructing a
polar pattern from the universal pattern such as Eq. (3-9) for the uniform-amplitude
distribution. An array can be analyzed as a sampling of the continuous distribution that
produces a Fourier series of the distribution. A Fourier series has multiple responses.
In Chapter 4 we design large arrays by sampling continuous distributions. The pattern
angle of an array is measured either from the axis using cosine of pattern angle or
is measured broadside using sine. You should become comfortable with either nota-
tion since the sine and cosine of angles involves only a complementary operation of
the angles.
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FIGURE 3-6 Circle diagram of a six-element uniform-amplitude array with A/2 spacing.

Since cos 6 (or sin 6) is limited to £1, the region along the abscissa of the universal
pattern used (the visible region) is found from the range of :

~360°d 360°d
45 to —— +

0 )
A A
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The circle diagram is constructed by first drawing a circle the same diameter as the
visible region below the universal diagram centered at §, the progressive phase shift
between elements. Figure 3-6 has a § = 0. Since the element spacing is A/2, the range
is £180°. The polar pattern radius equals the amplitude of the universal pattern. Both
the universal pattern and the polar pattern use a logarithmic (dB) scale from O to
—40dB. Projecting points vertically from the universal pattern to the visible region
performs the cosine or sine operation, and the polar pattern becomes the real pattern
in space. We project each point vertically until it intersects the dashed visible region
circle in two places and then draw lines from these points to the center. After you
project the nulls and peaks of the universal pattern to the dashed circle, it is easy to
sketch the polar pattern. The circle diagram helps us visualize patterns and the effects
of scanning, but no one would do serious design with it. Second, it is useful only for
small arrays because large arrays produce unwieldy diagrams.

When the spacing between elements is greater than A/2, the visible region widens to
include more than one periodic main lobe and the array has multiple beams. To have
a beam centered at 6, set the progressive phase difference between elements:

-360°d
6= cos 6, (3-10)
End fire (6; = 0) occurs when
—-360°d
s = — (3-11)

We can use Figure 3-5 to compute beamwidth angles of arrays. Table 3-1 is a list of
the y-space angles of the 3- and 10-dB levels.

Example A six-element equally spaced uniform array has spacings of A/2 and zero
progressive phase shift between elements (§ = 0°). Calculate the 3-dB beamwidth.

We read from Table 3-1 the value 34 = 26.90°. Because the pattern is symmetrical
in ¢ space (Figure 3-6), the second /34 is —26.9°.

kdcosb; 2+ 8 = tY3q48

360° A o +26.9°
———cosfy, = £26.90 cosf ) = ——
A2 ' ' 180°

6 = 81.4° 6, = 98.6°

TABLE 3-1 v -Space Angles of 3- and 10-dB Levels of an Equal-Amplitude Distribution
Array (deg)

N 3dB 10dB N 3dB 10dB N 3dB 10dB
2 90.00 143.13 11 14.55 24.21 20 7.980 13.29

3 55.90 91.47 12 13.33 22.18 24 6.649 11.08

4 40.98 67.63 13 12.30 20.47 28 5.698 9.492
5 32.46 53.75 14 11.42 19.00 32 4.985 8.305
6 26.90 44.63 15 10.65 17.74 36 4.431 7.382
7 22.98 38.18 16 9.98 16.62 40 3.988 6.643
8 20.07 33.36 17 9.39 15.64 50 3.190 5.314
9 17.81 29.62 18 8.87 14.77 64 2.492 4.152
10 16.02 26.64 19 8.40 14.00 100 1.595 2.657
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Remember that 6 is measured from the axis of the array (z-axis) and the 3-dB
beamwidth is the difference (17.2°). On Figure 3-6 the visible region ranges between
—180° and +180°. There are four sidelobes in the visible region (Figure 3-6). Since
an array samples a continuous aperture distribution, the continuous distribution is Nd
long. We can estimate beamwidth by using a uniform amplitude distribution:

A
HPBW = 50.76°— = 16.92°
Nd

This formula approximates the array beamwidth reasonably.

Example A six-element array has a progressive phase shift § of 90° between elements.
Compute the 10-dB beam edge angles for A/2 spacing.

Figure 3-7 shows the circle diagram analysis of this example. The line to the center
of the polar pattern has been shifted to 90° and the pattern spans 360° of the linear
scale. By projecting the nulls and peaks to the circle below, the pattern can easily be
sketched.

Yioag = £44.63°  (Table 3-1)
kd cos ;2 = £Y10a8 — &

o b b b b Db P Lo b Bl L Lo |
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FIGURE 3-7 Six-element uniform-amplitude array with A/2 spacing scanned with 90° pro-
gressive phase shift between elements.
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Solving for cos 6; », we have

+£y0a8 — 8  £44.63° — 90°
kd o 180°
6, = 104.6° 6, = 138.4°  beamwidth = 33.8°

cosbp =

There are five sidelobes in the visible region (Figure 3-7). Equation (3-9) gives the
beam maximum direction:

-5 —90°
kd — 180°
The main beam is no longer symmetrical about the beam peak. The 3-dB pattern angles
are 110.5° and 130.5°. The beamwidth (3-dB beamwidth = 20°) increases with scan

angle. What element spacing would result in this beamwidth for broadside radiation
8 =0°?

cosfy = 6y = 120°

360° o
Td cosf; =26.90° (Table 3-1)

On solving for spacing, we have

d_ 269°
A 360°cosb
Remember that the beam is centered on 6 = 90°, so that 6; = 90 — 20/2 = 80°.
d 26.9°
=0.431

X 360° cos 80°

The effective spacing has been reduced by approximately the cosine of the scan angle
from 6 = 90°, broadside:

% cos30° = 0.433

The accuracy of the cosine relation increases with more elements.

Example Determine the progressive phase shift between elements for an end-fire
array with 0.31 element spacing and compute beamwidth for a uniform distribution
array with five elements.

Figure 3-8 illustrates this example using the circle diagram. End fire occurs when
[Eq. 3-11)]

—360°(0.31) .
b= ———— =108

This is the progressive phase shift for all distributions with 0.3\ element spacing for
an end-fire pattern. Table 3-1 gives the v-space angle, 34 = £32.46°. Substituting
in the expression for ¥/, we have

360°(0.31) o
—————cosb;, = £32.46

+32.46° + 108°
360°(0.3)
140.46 75.46

—— =1.301 costh = —— =0.699
108 108

cosb, =

cosf| =
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FIGURE 3-8 Five-element uniform-amplitude array scanned to end fire.

0, is in invisible space, since |cos8| < 1; 6, = 45.6°. Symmetry about the z-axis sup-
plies us with the second angle §; = —45.6° and beamwidth is the difference: 91.2°.
The end-fire array samples a traveling-wave distribution. The continuous uniform dis-
tribution phased for end fire with the same length has a 90.4° beamwidth.

Remember that we have been dealing with isotropic pattern antennas. For example,
broadcast towers, seen from above, approximate isotropic antennas in the horizontal
plane. The patterns of the individual antennas modify the results of isotropic antenna
arrays. In small arrays the element pattern is quite significant, but the beamwidths of
large arrays are determined mainly by the array factor. The beamwidths calculated
for array factors approximate the actual beamwidths only when the elements have
significant patterns. We must rely on computer solutions of specific cases, including
the element pattern, for better results.

3-3 HANSEN AND WOODYARD END-FIRE ARRAY [2]

The end-fire array directivity increases if the sum of the progressive phase shifts
between elements is decreased by approximately w. The equivalent traveling-wave
velocity slows in the structure relative to free space. The progressive phase shift
between elements becomes

2.94
S=—kd— """~ _kd— 2  rad (3-12)
N N
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sen and Woodyard
end fire

FIGURE 3-9 Patterns of a normal end fire and a Hansen and Woodyard end-fire array of
isotropic elements.

where N is the number of elements in the array. The normal end-fire progressive
phase shift between elements, § = —kd, places one edge of the visible region at the
origin of i space. This method shifts the edge to a lower portion of the curve. The
universal radiation curve peak (Figure 3-5) shifts into invisible space and the sidelobes
rise in proportion to the new beam peak, but the beamwidth narrows. Equation (3-12)
holds strictly only for large arrays, but the directivity increases for all arrays when it
is applied.

Example Suppose that eight elements are spaced A/4 apart with a uniform ampli-
tude distribution. Compare the two endfire designs. The two patterns are compared in
Figure 3-9.

The results are as follows: The beamwidth decreases, and the directivity increases
by 2.5dB. The sidelobes rise to 9 dB from 13 dB.

3-4 PHASED ARRAYS

Suppose that a wave approaches at an angle to the axis of an array located on the z
axis (Figure 3-10). The wave reaches the top element first and progresses down the
array in succession. If the signals are added directly, they will cancel each other to
some extent because they have a progression of phases. Figure 3-10 shows the results
of adding a series of time delays to equalize the path lengths in the lines where the
position z; along the axis determines the time delay 7; for incident angle 6y:

Zi

T; = — cosBy+ 1o
c
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FIGURE 3-10 Linear array scanned with time-delay networks.

and velocity of light ¢c. We add an arbitrary time delay 7, to keep all time delays, t;,
positive. This feed network is frequency independent, as we vary the progression of
time delays to scan the beam.

Phase shifters replace the time-delay networks in phased arrays. They provide equiv-
alent beam scanning at a single frequency. To scan to an angle 6, the required phase
shift is

2n
— TZ cos 6y modulo 27t (rad)

—360°
A

zcos@y modulo 360° (deg)

for elements located on the z-axis. For a general space array we must counteract the
phase difference to the reference plane, /¥ for the direction of scan so that the
phases of all elements are zero. To scan in the direction (g, ¢9), we must add a phase
factor to every element, depending on its position. The phase factor on each element
of a general space array is

e kv (3-13)

where )
ko = TT[ (sin 6y cos PoX + sin O sin Po§ + cos 6yZ)
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is the vector propagation constant in the direction of the beam and r is the element
location. Adding this phase factor to the element phases causes the product of the
exponential factors [Eq. (3-2)] to be 1 at the scan angle, and the components E; add
in the scan direction.

Using phase shifters limits the frequency bandwidth. Given a fixed phase shift over
a small frequency range, increasing the frequency scans the beam toward broadside:

AO = L= h tan (E — 90) rad (3-14)
12 2

where 6, is the scan angle [3]. Limiting the allowable scanning with frequency to

plus or minus one-fourth of the local beamwidth defines the bandwidth of the array.

When the beam is scanned to 30° off the axis, the bandwidth is related directly to the

beamwidth at broadside (6 = 90°):

bandwidth(%) ~ beamwidth (deg) at 6, = 30°

The beam shifts less with frequency near broadside, since the tangent factor in Eq. (3-
14) approaches zero. A general estimate is given by

beamwidth (d
bandwidth(%) ~ eam;l—e(eg) (3-15)
cos 6

where the broadside beamwidth is used.

Example Given an array with 100 elements spaced at A/2, determine the bandwidth
when scanned to 45°.
The beamwidth is estimated from the aperture width:

50.76°
HPBW = sy~
100(1)

1
bandwidth(%) ~ ——— = 0.7%
2 cos 45°
Any radar antenna would have a broader beamwidth because the sidelobes need to be
reduced, but this is a good first estimate.

The bandwidth can be increased by feeding subarrays with time-delay networks. The
subarrays continue to be scanned with phase shifters. Only a few time-delay networks
are needed, and the subarray beamwidth determines the bandwidth. In Chapter 12 we
discuss the problems caused by using subarrays.

3-5 GRATING LOBES

Phased arrays vary the progressive phase by Eq. (3-13) to scan the beam. When the
array element spacing is greater than A/2, the appearance of secondary beam peaks
(grating lobes) limits the scan angle. The grating lobe attains full amplitude when

d s
X(l +cosfy) =1 Oy = COS 7 1 (3-16)



118 ARRAYS

-180 -90 0 90 180 270 360 450

360 sin 0|Spacing/i Visible

Phase . Region
E - — st o ~ i
| - N |
I Ve N |
( |
I 7 N |
| / \ }
/ |
\ 1
/ \
I 1
[ / \ 1
| 1
/ \l
/ |
|
l
I
\ /
\ /

\ /
\ /
A /
N /
N\ v
™~ e
~ e
~ P

—_—— —

FIGURE 3-11 Ten-element array with 31/4 spacing scanned to 26°, showing the onset of a
grating lobe.

Example The spacing of the elements of an array is 0.75A. Determine the scan angle
when the grating lobe is full amplitude.

4 o
Oy = cos™! (g - 1) = 70.5

At this point the grating lobe is the same amplitude as the main beam. The lobe does
not appear suddenly, but it grows as the visible region shifts and starts including the
second periodic main lobe. Figure 3-11 shows the grating lobe formation for an array
with 0.751 element spacings on a circle diagram. The dashed circle of the visible
region spans more than one beam of the universal radiation pattern of the uniform
amplitude array.

Arrays with element spacing greater than A always have grating lobes (multiple
main beams), but the pattern of the antenna elements may reduce the grating lobes to
acceptable levels and allow a wide element spacing.

3-6 MULTIPLE BEAMS

An array can form multiple beams. Equation (3-13) gives the phase coefficients to
multiply each element feed voltage E; to scan it to a given angle. The array will form



MULTIPLE BEAMS 119

a second beam if we add a second distribution: E;e~ /%™ The distribution E; remains
constant for both beams. We add the two distributions to obtain both beams:

Ei(e 78 4 ok (3-17)

This multiplies the distribution E; by a second distribution whose amplitudes and
phases are functions of the antenna position and the scan angles of the two beams.
Each beam uses the entire array to form its beam. In a phased array both phase and
amplitude must be varied to achieve multiple beams. An array, which can only vary
phase, must be divided into subarrays to form multiple beams, but its beamwidths will
depend on the subarray widths.

We can produce unequal beams with different amplitude distributions and pattern
shapes if needed. We can add as many beams as necessary by including the distribution
element factors with the scanning phase coefficients in Eq. (3-17). The element feeding
coefficients become the sum.

Example Compute the feed coefficients of a 15-element array with A/2 spacings and
a uniform distribution scanned to 45° and 120° from the z-axis.
First center the array on the z-axis. The elements are located at

(=840
Zl— 2

To scan to 45°, the element phase factors are

. o 360° 1 (—8+i)A
exp(—jkzicos45") =exp|—j . E 5

To scan to 120°, the element phase factors are e/%(=8+)_ The ninth-element (z9 = 1 /2)
phase factors are ¢ /1273 and ¢/%°. Assume a voltage magnitude of one-half for
each uniform-amplitude-distribution beam so that the center element has a magni-
tude of 1. We sum the distributions to calculate the feeding coefficient of the ninth
element:0.32¢/1614" When converted to decibel ratios, Table 3-2 lists the feeding coef-
ficients for the array. We can estimate both beamwidths from Table 3-1. 345 = 10.65°:

+10.65° + 127.28°

180°
+10.65° — 90°

180°

0, =40°, 6, =49.6°
cosb, =
0, =116.2°,0, = 124°

The pattern (Figure 3-12) has these beams.

The gain of each beam depends on the feed network. If a single input supplies power
to two beams, each beam can receive only half the input power and gain reduced 3 dB
for both beams. Butler matrices [4] and Blass beamforming networks [5] supply an
input for each beam. The inputs are isolated from each other and the transmitter power
in each port feeds only one beam, and therefore the full array gain is available to each
input. Similarly, we can place a receiver on each port and use the full effective area
for each.
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TABLE 3-2 Feeding Coefficients for a Dual-Beam 15-Element Array

Element Beamwidth Angle
Element (dB) (deg)
1 9 —-9.91 161.36
2 10 —1.99 142.72
3 11 —1.64 —55.92
4 12 —11.49 —74.56
5 13 —0.01 86.80
6 14 —8.59 —111.84
7 15 —2.38 —130.48
8

l

mplitude

5

|

Relative al

FIGURE 3-12 Fifteen-element linear array pattern with simultaneous beams at 6 = 45° and

120°.

We will delay the important topics of array synthesis and sidelobe reduction until
after we have discussed aperture distributions. A trade-off is made between the
beamwidth and the sidelobe levels. The beamwidth narrows only by putting more

power into the sidelobes.

3-7 PLANAR ARRAY

The linear array only controls the pattern in one plane; it depends on the element
pattern to control the beam in the other plane. Planar arrays can control the beam
shape in both planes and form pencil beams. Whereas a linear array can only scan in
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a single plane, a planar array can scan to any angle in the upper hemisphere. Most
planar arrays rely on the element pattern or ground plane to eliminate the backlobe on
the opposite side of the plane. The planar array has N — 1 nulls that can be used to
control the pattern where N is the total number of elements.

A simple feed distribution uses the product of two linear arrays. This eliminates
many degrees of freedom of the array because an M x N array would be determined
by M — 1+ N — 1 nulls when we could have used M x N — 1 possible nulls. Figure
3-13 shows the spherical pattern of a uniformly spaced 8 x 8 planar array where all
elements are fed the same amplitude where a 90° beamwidth element eliminates the
backlobe. The pattern along either principal axis shows the steady sidelobe reduction
that starts with —13.2 dB. Diagonal plane sidelobes are the product of the sidelobes in
the principal planes. The first sidelobe in the diagonal plane is down 26.4 dB. An array
feed distribution, not a product of two linear arrays, can yield more equal sidelobes in
all pattern planes.

Figure 3-14 illustrates the pattern of the rectangular array when the element feeding
coefficients are phased to scan the beam along one principal plane. The main beam
broadens in the plane of scan as the effective array length is reduced but stays narrow
in the orthogonal plane. More sidelobes appear behind the main beam. We see a large
sidelobe growing on the horizon that will become a grating lobe when the array is
scanned further. The sidelobes in the plane orthogonal to the plane of scan move with
the main beam but roll into a cone that becomes tighter with increased scan.

FIGURE 3-13 Spherical radiation pattern of an 8 x 8-element uniform-amplitude and spaced
square planar array.
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FIGURE 3-14 Spherical radiation pattern of an 8 x 8-element square-planar array scanned
along a principal plane.
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FIGURE 3-15 Contour plot of the pattern of a 4 x 4-element square array in k.k,-space
showing multiple beams and sidelobes.

Figure 3-15 shows a contour plot of the universal pattern of a 4 x 4 element rectan-
gular array. We denote this universal pattern k. k, space because the principal axes have
sin 6 factors similar to the universal pattern of a linear array. The array for Figure 3-15
has its y-axis element spacing 1.5 times wider than the x-axis spacing. The diagram
axes extend until multiple beams show on the figure. The main beams correspond
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to the center of the large “squares.” The visible region on the figure is a unit circle
with its center at the negative scan direction (—kyo, —kyo). This technique mirrors the
circle diagram of the linear array where the visible region is given by a linear region
centered at the negative scan direction. You should notice that the diagonal sidelobes
have smaller amplitudes than the principal plane sidelobes. We move the unit circle
as the array scans and the diagram shows those locations of scan that have multiple
beams (grating lobes). A grating analysis simplifies the diagram of Figure 3-15 to the
main beam locations.

When we place the two axes of the planar array at an angle instead of orthogonal,
we form a triangular array. Figure 3-16 gives the positions of a hexagon array made
with equilateral triangles. We derive the characteristics of this array from a linear
transformation of the rectangular array [6, p. 11-23ff]. Because the array has six-way
symmetry, Figure 3-17 the pattern of a uniform-amplitude 61-element hexagon array
shows the same six-way symmetry in the ring sidelobe around the main beam. If we
collapsed the hexagonal distribution to a line in one plane, the distribution has a taper
that reduces the sidelobes. The sidelobe amplitudes of the uniform hexagonal array are
lower that the principal-plane sidelobes of the rectangular uniform array. Figure 3-18
plots the spherical pattern of the hexagon array when scanned to 36°. The first ring
sidelobe has a distorted six-fold symmetry. Similar to the scanned rectangular array
(Figure 3-14), the hexagon array moves more sidelobes into visible space in the area
opposite the scanned main beam. Figure 3-14 showed a grating lobe entering visible
space, but the hexagon array pattern in Figure 3-18 does not. The grating lobes of a
rectangular array can be found from a linear array when it is scanned along one of
the principal axes, but the hexagon array requires a more elaborate analysis. When we
scan the rectangular array off the principal axes, we can no longer use the grating lobe
analysis of linear arrays.
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FIGURE 3-16 Position of elements in a hexagonal planar array.
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element hexagonal array.

FIGURE 3-17 Spherical radiation pattern of a 61
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FIGURE 3-18 Spherical radiation pattern of a 61-element hexagonal array scanned along a

principal plane.
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3-8 GRATING LOBES IN PLANAR ARRAYS

The circle diagrams of the linear array can be used in principal planes of a rectangular
array to compute grating lobes. For the planar array we use a sin 6 pattern space to see
the periodicity of the grating lobes and to analyze scanning in planes other than the
principal axes. The visible region is now limited to a unit circle in k. k,-space where
k, =sin6@ cos¢ and k, = sinf sin¢. k, is the pattern in the x—z plane, and k, is the
pattern in the y—z plane. Figure 3-19a shows the array layout, and Figure 3-1956 shows
the corresponding k. k,-plane grating lobe diagram. We reduce a contour plot of the
pattern response similar to Figure 3-15 to only the main beams for analysis of grating
lobes. The full contour plot is too busy. The narrower x-axis array spacing compared
to the y-axis spacing leads to wider-spaced grating lobes in the k,-plane than in the
k,-plane.

Beam scanning corresponds to movement of the unit circle in k. k,-space. Each
small circle in k.k,-space is a main beam in pattern space. When the unit circle
encloses more than one k,k,-circle, the pattern has multiple main beams or grating
lobes. The k,ky-plane diagram could also include sidelobe peaks or the contour plot
of the array pattern and illustrate the pattern change with scan. The k.k,-plane is the
two-dimensional Fourier transform of the distribution that becomes the periodic two-
dimensional Fourier series because the distribution is discrete. Increasing frequency
or relative spacing between elements increases the unit circle diameter on an existing
kyky-diagram in a manner similar to the circle diagram.

When we scan the beam, we move the unit-circle center in k.k,-space. We use
Eq. (3-13) to locate the unit-circle center on the diagram: k(sin 6 cos ¢y, sin 6y sin ¢).
The off-center circle on Figure 3-19 corresponds to a scanned beam and encloses two
main beams. In this case the grating lobe does not lie in the scan plane and would fail
to show in a simple pattern cut through the scan plane. A rectangular array produces a
rectangular grating lobe diagram, while other periodic arrays lead to more complicated
grating lobe diagrams.

Figure 3-20 shows the layout of the hexagonal array and the corresponding grating
lobe diagram. The hexagonal array (or equilateral triangular array) can be found from
a linear transformation of the rectangular array. The grating lobe diagram can be found
from the transformation as well. The spacing along the x-axis A; corresponds to the
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FIGURE 3-19 (a) Grating lobe diagram of a rectangular array; (b) distribution in k-space.
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FIGURE 3-20 (a) Grating lobe diagram of a hexagonal array; (b) distribution diagram.

vertical spacing B, on the grating lobe diagram, and the spacing along the diagonal of
each diagram are related. In both cases the corresponding axes on the two diagrams
are perpendicular:

A A
Bz = - and B 1= N
Alsina Assina
The angle between the triangular axes « is 60° for the hexagonal array. By allowing a
grating lobe when the beam is scanned to 90°, we can determine the maximum element
spacing without grating lobes:
A A 1
—— =2 or —=——
Ay sin 60° A 2 sin 60°
Figure 3-20 shows the visible region unit circle with the beam broadside to the plane
and then scanned to 36° for an element spacing of A. When scanned, the unit cir-
cle encloses three lobes. The three lobes do not lie in a plane. Figure 3-21 gives the

=0.577

FIGURE 3-21 Spherical radiation pattern of hexagon-array grating lobes.
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spherical pattern of the array when scanned to 36° and shows the three lobes in the
pattern. The array sidelobes have been reduced by sampling a circular Taylor distribu-
tion with the array so that the lobes show clearly. In Chapter 4 we discuss the use of
continuous aperture distributions to determine the feed amplitudes of planar arrays.

3-9 MUTUAL IMPEDANCE

Antennas in an array couple to each other because they receive a portion of the power
radiated from nearby elements. This affects the input impedance seen by each element,
which depends on the array excitation. We scan a phased array by changing the feeding
coefficients, and this changes the element input impedance called the scan impedance.
To first order, the coupling or mutual impedance is proportional to the element pattern
level along the array face, and we reduce coupling by using narrower-beamwidth ele-
ments. Mutual coupling can be represented by an impedance, admittance, or scattering
parameter matrix.
The first element of an N-element array has the impedance equation

Vi=Zunh+Zph+Zisl+---+Zinly

If we know the radiation amplitudes, we calculate the ratio of the currents:
I Iz Iy
Vi=h|Zu+—+Zo+—Zi+-+—Zn
I L 1,

The effective or scan impedance of the first element is

% I I I
Zl=—]=le+—2212+—3213+~~~+—N21N (3-18)
I I I I
It depends on the self-impedance and the excitation of all the other antennas. Scan
impedance was formerly called active impedance, but this led to confusion. The power
into the first element is

* * J4) I Iy
Py =Re(Vi1I]) =111[Re Z11+1—212+I—Zl3+"'+1—211\/ (3-19)
1 1 1

By knowing the feeding coefficients and the mutual impedances, we can compute the
total input power and gain. In general, every antenna in the array has different input
impedances. As the feeding coefficients change in a phased array to scan the beam, so
will the impedance of elements. The scan impedance change with scan angle causes
problems with the feed network. We can repeat the same arguments for slots using
mutual conductance, since magnetic currents are proportional to the voltage across
each slot.

3-10 SCAN BLINDNESS AND ARRAY ELEMENT PATTERN
[7, pp. 339-355; 8, pp. 365-366]

Large arrays made from elements with wide beamwidths can exhibit scan blindness.
When a phased array is scanned, at certain angles the input reflection coefficient of
every element rapidly increases to 1. The array fails to radiate and forms a pattern
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null. Mutual coupling between elements causes the change of the scan impedance,
which leads to scan blindness, which is complicated and difficult to predict accurately
except where the array structure supports a surface wave. One approach says that scan
blindness occurs when a grating lobe first enters from invisible space and radiates
along the surface of the array. In this case we solve Eq. (3-16) for the scan angle of
the grating lobe:

A
| cosf = = — 1 (3-20)

The angle in Eq. (3-20) is measured from the array plane (or axis). Scan blindness
occurs approximately at this angle, but it can be reduced to only a dip in the pattern if
the array is small or the mutual coupling between the elements is small, because they
have narrow beams.

The grating lobe causes a large increase in mutual coupling. Arrays made with
antennas that can support surface waves, such as microstrip patches on dielectric sub-
strates, can exhibit scan blindness when the electrical distance between the elements
equals the surface-wave propagation phase shift:

oSOy == — X =2 _p (3-21)

P is the relative propagation constant with a value > 1 for a surface wave (Section 10-
1). Scan blindness will occur at an angle near this value because of the complicated
nature of the coupling addition in the array.

We can build a small portion of the array and determine where scan blindness will
occur. Feed the center element and load all others with the feeder resistance. Each
element in an array will couple to its neighboring elements and we can associate
the combination of the element radiation and the coupled radiation of the neighbors
when loaded to the element. We call this the array element pattern or scan element
pattern (formerly called the active pattern). Elements near the edges will have different
effective patterns, but in a first-order solution we assume the pattern of the center
element for all and calculate the total pattern as the product of the element pattern and
the array factor. The array element pattern will exhibit dips where scan blindness will
occur in the full array. Because it is only a small portion of the array, the full scan
blindness will not occur. You should build a small array and test for scan blindness
whenever it is a possibility. For example, arrays that scan to large angles off broadside
using broad-beamwidth elements need to be tested with a small array before building
the complete array.

3-11 COMPENSATING ARRAY FEEDING FOR MUTUAL COUPLING

Mutual coupling (impedance) is a measure of how much one antenna receives radiation
from its neighbors in the array. Each element radiation changes the effective excitation
on its neighbors. In a large array not requiring exact patterns, the effects average out.
But when the array is small or you try to achieve low sidelobes, mutual coupling must
be compensated for in the array. Small antenna elements such as dipoles or slots are
resonant structures that radiate in only one mode. Mutual coupling only changes the
element excitation, not the shape of the current distribution on the element. In this case
we measure or calculate the mutual coupling matrix and use it to compute element
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excitation to achieve the desired excitation [9]. Find the coupling matrix by adding the
identity matrix to the S-parameter matrix of the antenna coupling:

C=14+S (3-22)

We compute the new feed excitation from the desired excitation and matrix inverse of
Eq. (3-22):
Vrequired = CilVdesired (3-23)

Because we assumed a single mode distribution on the antenna elements, S is inde-
pendent of scanning and Eq. (3-23) gives the compensation for all scan angles. The
compensation can be applied to the received signal in an adaptive array by matrix
multiplication in digital signal processing. The effects of these operations have been
illustrated [10]. Without compensation adaptive arrays, such as the MUSIC algorithm,
only generate small peaks, whereas compensation produces the expected large peaks.

Compensation for multimode elements starts with a moment solution [11] and uses
the pattern characteristics to solve for the feeding coefficients. We use the pattern
desired to compensate the feeding coefficients. We start with a matrix between the
pattern response and the currents on all the antenna elements found from a moment
method solution, where each array element has multiple current segments:

AK) = FI (3-24)

A(k;) is an element of the column matrix that gives the pattern response at an angle
given by K; = Xsin6; cos ¢; + §sin6; sin¢; + Zcos6; or a given pattern angle (6;, ¢;).
The elements of the matrix F are the isotropic element phase terms, /%t and 1 is
the column vector of the currents on the segments. We calculate excitation voltages by
inverting the mutual impedance matrix:

I1=7"1v (3-25)

We substitute Eq. (3-25) into Eq. (3-24) and note that the matrix V has only ¢ nonzero
terms corresponding to the feed points. We specify ¢ pattern points, which reduces F
to g x M for M current segments. The vector V has M — g zero elements and we
delete the corresponding columns in the matrix product FZ~!. This reduces the matrix
to g x g, denoted B:

Ak) =BV’

This uses the nonzero element V. We solve for the feeding coefficients by inverting
the matrix B found from ¢ pattern points:

V' =B 'Ak) (3-26)

Choosing good pattern points is an art that requires pattern evaluation to verify whether
the final pattern is acceptable.

3-12 ARRAY GAIN

We can use the mutual impedance concept to determine the effective input power of
every element and thereby avoid having to integrate the pattern to calculate average
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radiation intensity. We represent the circuit relations of two antennas by a two-port

impedance matrix:
Vil_|Zn Zn||h
V, Zy ZIn || Db

Symmetrical elements across the diagonal of the matrix are equal for antennas satisfying
reciprocity. The total input power is given by

Py, =Re(Vi 1) + Re(WL13)

The general N-element array has an N x N matrix and N terms in the input power
sum. Given the feed coefficients, we have a relation between different I;. For our
two elements,

L, = I1ej‘S and V, =(Z; + Zuejs)ll

The power into the first element is
Re(Zi + Zine” )L I}

By symmetry, the power into the second antenna is the same. The total input power
to the array is

Re(Z,e/®
Pn=2Re(Zi)L 1} [1 + M]

Re(Z11)

The factor Re(Z;,)1,1] is the power into an isolated element: 4nE§ /1. The average
radiation intensity (100% efficient antenna) is P;,/4m:

RE ) P/ 12 (G 2
Pujdn 1+ [Re(Z1e)/[Re(Z1))]

gain = directivity = (3-27)

By comparing Eqgs. (3-27) and (3-8), we can identify

Re(Zj5e/’)  Ripcoss  sin(2md /) cosd

Re(Z1)) Ry 271d /A
Rip(d)  sin@md/})
R 2md/x

We can use this mutual impedance ratio to compute directivity of arrays of isotropic
elements of any number.

Example Calculate the directivity of a linear array of three equally spaced isotropic

elements with equal amplitudes and phases.
The powers into the elements are

P=P

AnE? Ri2(d)  Rix(2d
_ o |:1 n 12( )+ 12( )]
n Ry Ry
_ AnE} [1 N 2R12(d)} U 3’E}

n Ry

2
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The total power into the array is found from the sum:

AmE2 4R,(d) 2R;x(2d
P =P 4P+ P = 0|:1+ 12()+ 12( )i|
n Ry Ry

Umax 9

directivity — _
trectivity P /Am 34 [4Ri2(d)/Ri]+ [2R12(2d)/R11]

The directivity of the general N-element equally spaced linear array, excited by
equal-amplitude and equal-phase signals, is easily found by extending the development:

N?(element directivity)

N+ 222_11 (N — M)[R;2(Md)/Ri1]

directivity = (3-28)

The directivity attained in an array depends on the particular mutual impedance terms
of the radiators. The equation above only handles uniform-amplitude linear arrays. We
can extend the idea of mutual resistance to calculate input power to a general planar
array consisting of identical elements and determine gain.

By using a two-element array spaced along the x-axis we can integrate the pattern
to compute directivity and from that determine the ratio of mutual resistance to self-
resistance of the elements versus element spacing:

Ryp(x)  element directivity
Rl 1 N 27

2n b4 X

/ / E2(9, ¢) cos? (T cos ¢ sinG) sin6dodp — 1
o (3-29)
Equation (3-29) uses the normalized element pattern in the integral. By using an
axisymmetrical element pattern, we calculate the ratio of resistances at a number
of different distances and interpolate on the table for the directivity (gain) analysis
of a planar (linear) array. If the element pattern is not symmetrical, the normalized
resistance must be calculated for a number of ¢. Given the element excitations E;
with elements located at the vector locations x;, we can derive an equation similar to
Eq. (3-28) for directivity of a planar array:

N 2
‘ E ] ]E,-‘ (element directivity)
=

directivity = (3-30)

N N ;
Zizl ijl[RU('Xi —X;|)/Ri1]Re[E;/E;]|E;|

Figure 3-22 illustrates the directivity calculated from Eq. (3-30) for linear arrays
with realistic elements, such as a microstrip patch with 90° beamwidths, as the element
spacing is varied. The graph shows directivity reduction when the element spacing
exceeds A and grating lobes form a more pronounced characteristic as the number of
elements increases. When the second grating lobe occurs for wider element spacing, the
directivity exhibits only minor variations. Increasing the element directivity (decreased
beamwidth) reduces variation because the element pattern reduces the grating lobe.

We use Eq. (3-30) with a planar array to obtain Figure 3-23. This array consists of
217 elements arranged in a hexagonal pattern, with amplitudes found from sampling a
circular Taylor distribution (Sections 4-18 and 4-19) to lower the sidelobes. The 30-dB
circular Taylor distribution reduces the gain by 0.6 dB relative to a uniform distribution
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FIGURE 3-23 Directivity of a 217-element uniform-amplitude hexagonal array for various
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due to the amplitude taper across the array. Initially, the element spacing is 0.6, but
the element spacing has been allowed to grow in Figure 3-23 to show the effect. Figure
3-23 also illustrates the effect of increasing the element gain on the gain of a planar
array. When we space the elements less than A, increasing the element gain has no
effect on array gain because the effective area of an antenna with a 90° beamwidth
exceeds the area between elements and collects all power incident on the array. If we
increase the element gain, the effective areas of the elements overlap and they share
the incident power. On Figure 3-23 the curves overlap for element spacing less than
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about L. At the lower end of Figure 3-23 the gain increases by 6 dB as the element
spacing doubles. This shows that increasing the element gain will have no effect on
array gain when the present element covers the area associated with it.

When the grating lobe enters from invisible space as the element spacing increases,
those arrays with narrower-beam elements suppress the lobes and continue the general
gain increase. The array directivity (gain) drops as the element spacing increases for
the wide-beamwidth element with 90° beamwidth because of the grating lobe. At a
large element spacing the array gain becomes N times the element gain. We determine
array gain from the array area and the amplitude taper for closely spaced elements.
For wide element spacing, we calculate gain from the product of the number of ele-
ments and the element gain. Figure 3-23 shows a smooth transition between the two
regions.

3-13 ARRAYS USING ARBITRARILY ORIENTED ELEMENTS

When we mount arrays on vehicles, the elements are pointed in arbitrary directions.
Although Eq. (3-1) will calculate the pattern of any array, the element patterns are
usually measured in a coordinate system in a different orientation than in the array.
The idea of an array factor times the element pattern collapses and an analysis must
rotate the pattern direction into the coordinates of each element. We will use coordinate
rotations on the elements not only to specify them, but to calculate the pattern of the
array. In a later chapter we use the same concept to point a feed antenna at a reflector.

We rotate the pointing direction into the coordinate system of the orientated antenna
to determine what direction angles to use for the element pattern. We do this by using
a 3 x 3 rotation matrix on rectangular components:

X
[Xrolated Yiotated Zrolated] = [rotation matrix] Y (3'31)
Z

A similar problem is rotating an object. Both cases use the same matrix. To rotate
an object we multiply the vector by the rotation matrix from the left to compute the
rotated coordinates. Rotating a position is given by the equation

X rotated
[Xoa Yoa Zoul[rotation matrix] = Yiotated (3-32)

Zrotated

The rotation matrix can be found from the directions of the unit vectors when rotated.
It is given by
rotated X-axis
rotation matrix = | rotated Y-axis (3-33)
rotated Z-axis

The method uses 3 x 3 matrices to perform the rotation by a multiplication with a
position or direction vector. Rotation about the X-axis is given by

1 0 0
0 cosA sinA
0 —sinA cosA



134 ARRAYS

rotation about the Y-axis is given by

[[cosB 0 —sinB
0 1 0
i sinB 0 cos B

and rotation about the Z-axis is given by

cosC sinC O
—sinC cosC O
0 0 1

We use products of these axis rotations to reorient an object or pointing direction.
Consider the rotation of a position by the product of three rotation matrices:

Xrolated
[Xouw Yoid ZoalRIRR3 = | Yigrared

Zrotated

The logical approach is to multiply the 3 x 3 matrices, R, R,, and Rj3, before mul-
tiplying by the position vector. When we postmultiply R; by Ry, it rotates the axis
of rotation of R;. The postmultiplication by Rj3 rotates the rotation axis R, and R; is
rotated once more. We can take the rotations one by one from left to right and use the
rotation matrices about each of the principal axes provided that we convert the column
vector back to a row vector after each multiplication.

A convenient way to define the orientation of objects in space is to use spherical
coordinate angles, since they are the same as pattern angles. We line up the matrices
from right to left in this case. When rotating the coordinate system about an axis, the
other axes change direction. The next rotations are about these new axes. The three
rotations are often called the Euler angles. We use the following three rotations for
spherical coordinate pointing:

1. Z-axis rotation = ¢
2. New Y-axis rotation = 6
3. New Z-axis rotation: aligns the polarization of the antenna

The last rotation takes some thought because the first two rotations have altered the
orientation of the antenna.

When calculating the pattern of the array for a particular direction, first compute
rectangular components of the direction vector and the two polarization vectors. Mul-
tiply the direction vector by k(2m/)) and take the dot (scalar) product with the position
vector to calculate phasing of a particular element. You need to determine the pattern
direction in the rotated antenna’s coordinate system found by using Eq. (3-31). Mul-
tiply the rotation matrix by the unit direction vector placed to the right. When you
convert the output vector to spherical coordinates, you obtain pattern coordinates of
the rotated antenna. Both the pattern components of the rotated element and the unit
polarization vectors are needed. In the next operation you rotate the prime coordinate
polarization unit vectors into the rotated element coordinate system using the same
operation as the direction vector.
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You calculate final radiated components by projecting the rotated prime coordinate

polarization vectors on the element pattern unit polarization vectors:

EG = EG,e]ementhlement * 9rotated + E¢,element¢element * Qrotated

E¢ = Eé,elementeelement * ¢rotaled + E¢,e1ement¢element * ¢r0tated (3'34)

Since we measure element patterns on antenna positioners, it is convenient to consider
positioners as a series of coordinate system rotations.
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APERTURE DISTRIBUTIONS
AND ARRAY SYNTHESIS

Continuous apertures and arrays share similar characteristics. We compute the radiation
pattern of the aperture by using the Fourier transform. Array sampling of an aperture
distribution leads to a Fourier series analysis for its pattern. We rely on our familiarity
with signal processing to give us insights into these processes and their characteristics.
We apply aperture theory to the analysis of horns, lens, and reflector antennas, but
it also describes array antennas. Since we can design antennas only approximately
to produce particular aperture distributions, we often realize them by sampling with
an array.

We start with aperture efficiencies developed from the Huygens source approxima-
tion of Section 2-2. We apply this method to horns, lens, and reflector antennas for both
synthesis and tolerance analysis. The uniform and cosine distributions occur naturally
in horns and simple resonant antennas. We use aperture distributions to realize bounds
on antenna characteristics given size and excitation distribution.

Taylor developed an aperture distribution based on Dolph’s use of the Chebyshev
polynomials to produce the narrowest beamwidth for a specified sidelobe level for
an array. The Chebyshev array design produces equal-amplitude sidelobes that we
discover to be undesirable for large arrays because the equivalent aperture distribution
peaks at the ends and the average value of the sidelobes limits the directivity to 3 dB
above the sidelobe level. Large edge peaking of the distribution requires a feed network
containing a large ratio of coupling values. Mutual coupling between elements causes
unwanted excitation for a large ratio of element amplitudes and we lose control. Our
usual practice is to sample a Taylor distribution for large arrays. The distribution has
limited edge peaking, and large arrays can realize high gains.

Aperture distribution synthesis involves manipulating pattern nulls to achieve desired
characteristics. Taylor used the zeros of the Chebyshev array to alter the positions of the
inner nulls of the uniform distribution to lower sidelobe levels. Elliott extended this
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idea to iterate the positions of these nulls to produce a linear aperture that radiates
individually specified sidelobes. Schelkunoff developed a transformation between the
pattern of an array and a polynomial where we combine the roots (or zeros) of the
array polynomial in the complex plane with a mapped pattern variable that traverses
the unit circle to analyze array patterns. We synthesize arrays by manipulating these
polynomial zeros in the complex plane. Similar to Elliott’s method of null positioning
for the continuous linear aperture, Orchard (and Elliott) developed an iterative method
applied to array polynomial zeros to synthesize arrays. The method allows us to specify
sidelobes individually and to shape the main beam pattern by moving some zeros off
the unit circle. When designing shaped beams, improved synthesis by the Orchard
method reduces our use of both array sampling of the Woodward continuous aperture
method and direct Fourier series synthesis for linear arrays, but both earlier methods
give us insight. We consider the design of series feeding where elements are fed directly
from a transmission line for a linear array or continuous linear aperture. This requires
specification of the couplers or loading of the transmission line along the array because
a portion of the power is extracted at each position with the remaining power dissipated
in a load.

We repeat aperture analysis for circular apertures to show limitations of large reflec-
tor antennas and for use in sampling with an array. For planar arrays, we reduce many
rectangular apertures to the product of two linear distributions. A Chebyshev-type pla-
nar array with equal sidelobes can be designed so that the sidelobes in the diagonal
planes are not reduced unnecessarily. Convolution synthesis of planar arrays allows
manipulation of the pattern zeros in groups of smaller arrays similar to the Schelkunoff
method. Finally, we consider aperture blockage and phase errors that lead to gain
reduction and increased sidelobes.

4-1 AMPLITUDE TAPER AND PHASE ERROR EFFICIENCIES

When we use the Huygens source approximation, we calculate power radiated by
summing (integrating) the magnitude squared of the electric field in the aperture and
dividing by the impedance of free space. The average radiation intensity is the radiated
power divided by the area of a unit sphere, 4. To complete the calculation, we compute
the maximum radiation intensity by dividing the maximum of the magnitude squared
of Eq. (2-24) by the impedance of free space and directivity (Umax/Uavg) becomes

2
// Ee’® " gy’
m

(1 + cos8)? |*%

)»2
/ |E>ds'

s

ax (4_1)

Equation (4-1) can be used for directivity in any pattern direction, including the max-
imum of the numerator integral.

An aperture with a uniform amplitude and phase distribution has directivity 4w A/A2,
where A is the area. We separate directivity reductions into individual terms due to
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aperture field amplitude and phase variations, and we express the general aperture
directivity as

C 4mA
directivity = 2 - ATL - PEL

where ATL is the amplitude taper efficiency (loss) and PEL is the phase error effi-
ciency (loss). Only amplitude variations contribute to ATL, and only phase variations
determine PEL.

We start with a uniform phase distribution in the aperture where the beam peak
occurs normal to the aperture (¢ = 0°) and PEL = 1. We obtain uniform phase fields
by using |E| in Eq. (4-1):

/ |E|ds
e T 47 A
directivity = el = - ATL

2 )»2
/ |E|*ds

where k, = k, = 0 on the boresight (¢ = 0°). On solving for ATL, we derive

/ |E|ds

AT d 4-2)

L=—"— "
A//|E|2ds

We have forced a constant phase everywhere in the aperture to separate out the
amplitude taper effects. We account for nonuniform phase with PEL. The phase error
efficiency can be found from

2

directivity (6, ¢)

PEL. 9) = Ga/iz) - ATL

where we use directivity (8, ¢) and PEL (6, ¢) depends on the pattern direction (6, ¢):

2

// Ee/® " ds
(14 cos)? |
4 2

/ |E|ds

N

k = k(sin 6 cos ¢X + sin 0 sin ¢p§ + cos 07)

PEL(0, ¢) =

(4-3)

For an aperture in the x—y plane,

K-r' = k(x'sin6 cos ¢ + y’ sin 0 sin ¢)
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We determine maximum PEL to relate it and ATL to directivity. Traditionally, we use
the boresight value (9 = 0°) and Eq. (4-3) reduces to

fies]

PEL = s—z (4-4)
/ |E|ds
N

Unless specified, PEL will be Eq. (4-4) and we use Eq. (4-3) for scanned apertures.

Equations (4-2) and (4-4) separate the effects of amplitude and phase variations in
the aperture on the directivity at the boresight. If these efficiencies are expressed in
decibels, the directivity becomes

4 A
directivity(dB) = 10log % + ATLyg + PELgg

Expressed in decibels, the efficiencies are called losses: amplitude taper loss (ATL)
and phase error loss (PEL). It is important to remember that these are the losses at
the boresight. A linear phase taper across the aperture scans the beam, but Eq. (4-4)
predicts the boresight loss, which could be a null of the pattern. ATL is independent
of phase variations that cause squinting of the beam.

4-1.1 Separable Rectangular Aperture Distributions
If the distribution in a rectangular aperture is separable,
E(x,y) = Ei(x)Ex(y)
the efficiencies also are separable.
ATL = ATL,ATL, and PEL =PEL,PEL, (4-5)

Given a rectangular aperture with an x-axis excursion of £a/2,

al2
[f |Ey(x)] dX]
—a/2

2

ATL, = 7 (4-6)
a / |E\(x)|2dx
—a/2
a/2 2
‘/ Ei(x)dx
PEL, = —— . (4-7)

a/
[/ |E1(X)|dX]
—a/2

The formulas for the y-axis are the same except for the substitution of y for x.
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4-1.2 Circularly Symmetrical Distributions

If a circular aperture has a circularly symmetrical distribution, we easily reduce Eqgs.
(4-2) and (4-4) to

a 2
2[/ |E(r)|ra’ri|
ATL = =20 (4-8)
a2/ |E(r)|?r dr
0
a 2
/ E(r)rdr
PEL = Oa (4-9)

2
|:/ |E(r)|rdr:|
0

where a is the radius.

We need a short word on formulas using integrals. They look formidable and seem
to have little immediate practical use. In the catalog of distributions to follow, results
will be given. A general distribution must be solved by numerical integration. One
of the Newton—Cotes methods, such as Simpson’s rule or the Rhomberg integration,
can be used when evenly spaced values are known. With a known function for the
distribution, we use the Gauss—Legendre technique, whereby the method selects the
required function values. It is sometimes easier to calculate the integrals numerically
instead of writing routines for special functions that arise with circular apertures. Exact
expressions are ideal; but unless a distribution is forced by a mode on the structure,
it is difficult to achieve the exact distribution. We need only approximations to the
accuracy of practical interest.

4-2 SIMPLE LINEAR DISTRIBUTIONS

We assume that rectangular apertures have separable distributions so that we can deal
with one coordinate at a time. We compute the pattern in the plane containing the line.
By drawing the pattern in k. (or k,)-space, we can calculate patterns independent of
the aperture size in a way similar to that used for arrays in Chapter 3. In Chapter 2
we derived the k,-space pattern for a uniform distribution:

asin(k.a/2)

ta2 (4-10)

where a is the aperture width and k, = k sin 6 cos ¢. We suppress cos ¢ and consider
only patterns in the ¢ = 0° plane. Figure 4-1 shows the k sin 6 space pattern of a
uniform distribution. The pattern does not repeat at 27 intervals (radians) as the array
does, but the sidelobes continue to decrease at a rate of 1/x. The first sidelobe is
13.2dB below the peak. The aperture size a, along with the scanning variable sin 6,
determines the visible region in Figure 4-1. It ranges between +ka/2 centered on ka/2
sin 6y, since the maximum value of sin 6 = 1.
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FIGURE 4-1 k,-space pattern of uniform line-source distribution.

Example An aperture is four wavelengths long. Determine the number of sidelobes
between 6 = +90° when sin 6, = 0 (boresight).
The maximum value in (k sin 0)-space is

27 4A
——=4n or 12.57
A2

There are three sidelobes on each side of the main beam (Figure 4-1) in the visible
region. The first sidelobe occurs when ka/2 sin 6; = 4.5, or

L 4S5

aT

9, = sin 21°

We found the half-power beamwidth in Chapter 2:

0.44291

a

HPBW = sin~!

@-11)

valid when we ignore the obliquity factor, (1 + cos6)/2. When we approximate x =
sin x (radians) for small angles, we obtain

A
HPBW = 50.76°Z (4-12)
a

We use this as the standard and describe other HPBW by their beamwidth factors.
The beamwidth factor of the uniform distribution is 1.00. We also consider the null
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beamwidth (BW,,;) of the distribution. The first null occurs at £ in the k sin 6
pattern:

Bwnuu =2 sin_l

Q| >

oA
~ 114.59"—
a

We also establish a beamwidth factor for the null beamwidth. When we scan the beam
to a direction 6, the visible region centers at ma/A sin6, in (k sin 6)-space.

Example Compute beam edges when 6y = 30° and a = 6 for a uniform distribution.

%(sin 612 — sin6) = £0.4429

. +0.4429
sinf; , = 6 + 0.5

6, = 35.02° 0, = 25.23°

The beamwidth is the difference, 9.79°. If we take the beam center as the average
between the 3-dB beam edges, we get 30.12° for the beam center. By using the cosine of
the beam center times the aperture size, we get 5.19A, the projected aperture dimension.
On substituting this in Eq. (4-11), we calculate HPBW = 9.79°. The actual beam peak
is at & = 30°, but the pattern is asymmetrical about 6.

Other simple geometrical distributions on a linear aperture follow the same Fourier
transform relation as the uniform distributions with differing transforms in (k sin 6)-
space. Table 4-1 lists the properties of some common distributions.

Example Compute the beamwidth of a 7\ aperture with a cosine distribution.
From Table 4-1, the beamwidth factor = 1.342. The taper increases the beamwidth
over that of a uniform distribution:
50.76)

a

HPBW = 1.342

0.4429)
=9.73° or HPBW = 2sin~! (1.342 ) =9.74°

a

We can add distributions and calculate the pattern from the sum of the transforms.
Adding a pedestal (uniform distribution) to the cosine-squared distribution decreases

TABLE 4-1 Common Linear Distribution Characteristics

First Sidelobe ~ HPBW ~ BW,u  ATR
Distribution fr (dB) Factor Factor (dB)
in(k,a/2
Uniform sintk,a/2) 132 1.000 1.000 0
kya/2
in(k,a/4) 7
Triangular sintk,a/4) 26.5 1.439 2.000 125
koa /4
. cos(kya/2)
Cosine 2 A/ 23.0 1.342 15 0.91
12 — (kea)?
) sin(k,a/2)
Cosine 31.5 1.625 2.000 1.76

(kva/2)[1 = (a/20)]




SIMPLE LINEAR DISTRIBUTIONS 143

the beamwidth and the sidelobes of the cosine-squared distribution. The aperture dis-
tribution is given by

) X a
E(x) =PD + (1 — PD) cos ” |x|§§
where PD is the voltage pedestal level. The first sidelobe of the uniform distribution lies
within the null beamwidth of the cosine-squared distribution. The phase of sidelobes
with respect to the main beam alternates between 180° and 0°, and the sidelobe of
the pedestal subtracts from the main lobe. The second sidelobe of the pedestal occurs
in almost exactly the same k-space location as the first sidelobe of the cosine-squared
distribution. These lobes cancel each other to some extent. Table 4-2 gives the required
pedestal measured relative to the peak of the distribution for a given maximum sidelobe
level. The minimum sidelobes (43.2dB) occur for a pedestal level of —22.3dB. At
lower pedestal levels, the sidelobes rise and the beamwidth factor increases at a constant
rate as the pedestal level decreases.
The amplitude taper efficiency of the cosine squared on a pedestal is

2(1 4+ PD)2

ATL= ——————
3 +2PD + 3PD

ratio (4-13)

Amplitude distributions based on simple functions have limited use. The uniform and
cosine distributions or close approximations occur naturally, but the others must be
forced on an aperture. An array can sample a distribution to achieve results similar
to those for an aperture. A sampled cosine squared on a pedestal is handy for quick
tolerance studies of array feed networks, but is far from optimum. Table 4-2 lists the
pedestal to achieve a given sidelobe level for this distribution. We consider distributions
that allow close control of sidelobes and achieve minimum beamwidths.

The rate of decrease of the far-out sidelobe depends on the functional relation of the
distribution at the edges [1]. If « is the exponent of the distribution approximation x,
where x, is the distance from the edge, then the sidelobes decay as U ~1+®), where U

TABLE 4-2 Pedestal Level to Achieve a Given
Maximum Sidelobe Level for a Cosine Squared on a
Pedestal Distribution

Sidelobe Pedestal Beamwidth ATL
(dB) (dB) Factor (dB)
30 —12.9 1.295 0.79
32 —14.2 1.325 0.89
34 —15.7 1.357 0.99
36 —17.3 1.390 1.10
38 —18.7 1.416 1.18
40 —20.0 1.439 1.25
42 -21.4 1.463 1.32
4274 -219 1.471 1.34
4320 —22.3 1.476 1.36

“Hamming distribution.
bMinimum sidelobe level.
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is a linear function of the k-space variable. Both the triangular and cosine distributions
have o = 1, and the far-out sidelobes decay as 1/U?. The cosine-squared distribution
sidelobes decay as 1/U3, since a = 2. In the case of a cosine squared on a pedestal, the
edge functional relation is a step (pedestal, « = 0) and the far-out sidelobes decay as
1/U. The sidelobes of the pedestal eventually overtake the cosine-squared distribution
sidelobes, decreasing as 1/U 3. To achieve uniform sidelobes, ¢ must be —1, which
occurs only when the distribution edges are Dirac delta functions, which requires
infinite energy in the aperture or design reduction to discrete sources (an array).

We must accept a trade-off between radiated power in the main beam and in the
sidelobes. When we narrow the main beam in a fixed size aperture, more power radiates
in the sidelobes. We achieve minimum beamwidth in the main beam when all the
sidelobes radiate the same power (maximum radiated power in the sidelobes for a given
level) and all sidelobes are at the same level. This case leads to the Dolph—Chebyshev
array [2], impossible to duplicate in a continuous aperture.

4-3 TAYLOR ONE-PARAMETER LINEAR DISTRIBUTION [3]

The uniform distribution has k-space zeros at (Figure 4-1) +nn,n =1, 2, 3, .... Taylor
defines a new variable U to replace & sin 6:

sin tU
U

where U = (a/A)(sinf — sinfy) and a is the aperture width. The nulls (zeros) are
then located at integer values of U. Taylor adjusted the inner zeros of the uniform
distribution to lower the sidelobes while retaining the outer zeros at their locations
in the uniform distribution. The zeros are modified by a parameter B the boundary
between the two regions in U-space:

U, =+/n>+ B2 (4-15)

The pattern has different expressions in two regions:

sinh v/ B2 — U?
Y
sintv/U? — B2
T

The high value of Eq. (4-16a) at the boresight depresses the sidelobes of the uniform
distribution, and the parameter B controls all the parameters of the distribution. We
compute B from the desired sidelobe level (SLR) by an iterative solution of the equation

(4-14)

|U| < B (4-16a)
FU) =
|U| > B (4-16b)

sinh TB
SLR = 13.26 4+ 20 log T 4-17)
b1

Scale 4-1 gives the Taylor single-parameter distribution B for a given sidelobe level.
The aperture distribution over the range —0.5 to 0.5 is given by the equation

Io[mBy/1 — (2x)2]
Ip(mtB)

(4-18)
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Design Sidelobe Level, dB

Taylor Single Parameter, B

SCALE 4-1 Taylor single-parameter B for a sidelobe level.
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SCALE 4-3 Taylor single-parameter amplitude taper loss for a given sidelobe level.
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Taylor Single Parameter HPBW Factor
SCALE 4-4 Taylor single-parameter HPBW factor for a given sidelobe level.

Using Eq. (4-18), we calculate aperture edge taper as a function of sidelobe level, given
by Scale 4-2. By inserting the expression for the aperture distribution [Eq. (4-18)] into
Eq. (4-6), we calculate amplitude taper loss as a function of sidelobe level (Scale 4-3).
The HPBW factor can be found from Eq. (4-16) or read easily from Scale 4-4.
Figure 4-2 compares the U-space patterns of the Taylor one-parameter and uniform
distributions. Synthesizing aperture distributions and arrays concentrates on the place-
ment of pattern nulls. The one-parameter distribution scaled the locations of the nulls
(zeros) by using Eq. (4-15). You should notice that the nulls approach those of the
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FIGURE 4-2 U-space pattern of 30-dB Taylor one-parameter linear distribution versus uni-
form distribution.

uniform distribution as U increases. Except for a shift near U = 0, the pattern falls off
at a 1/U rate for far-out sidelobes.

You can use the one-parameter Taylor distribution to estimate the characteristics
of a linear distribution for a given sidelobe level. A comparison of this distribution
to the cosine squared on a pedestal (Table 4-3) shows that it is not as efficient for
moderate sidelobe levels. The cosine squared on a pedestal distribution achieves low
sidelobes by canceling sidelobes in two distributions and cannot be extended to any
sidelobe level, whereas the one-parameter distribution can produce designs for any
sidelobe level. More important, it demonstrates the systematic use of U-space pattern
null placement for design. Taylor improved on this distribution by considering the
zeros of the Dolph—Chebyshev array to flatten the first few sidelobes of the pattern
response and achieved a more efficient distribution.

TABLE 4-3 Comparison Between the Taylor
One-Parameter Distribution and Cosine Squared on
Pedestal Linear Distribution for Selected Sidelobe

Levels

Pedestal ATR HPBW
Distribution (dB) (dB) Factor
30-dB one-parameter —21.13 0.96 1.355
30-dB cos® + pedestal —12.9 0.79 1.295
36-dB one-parameter —28.49 1.30 1.460
36-dB cos® 4 pedestal —17.3 1.10 1.390

40-dB one-parameter —32.38 1.49 1.524




TAYLOR 7 LINE DISTRIBUTION 147

4-4 TAYLOR 7 LINE DISTRIBUTION [1]

The Taylor 7 line-source distribution modifies the location of the inner pattern zeros
(nulls) of a uniform distribution to approximate the Dolph—Chebyshev array. The dis-
tribution contains a pedestal « = 0 and retains the 1/U fall-off for the far-out sidelobes.
We can modify any number of inner zeros of the pattern to approximate the uniform
sidelobe-level array, but we force the aperture voltage to peak at the ends in approx-
imating the Dirac delta functions. We limit the number of altered zeros to keep the
distribution practical. After a point, shifting more zeros reduces beamwidth negligibly.

We manipulate the location of pattern zeros to obtain desired patterns. Both aperture
and array syntheses depend on zero locations. The number of array elements determines
the number of independent zeros (n — 1), but a continuous aperture has an infinite
number of independent zeros. Practical consideration of the distribution edge shape
limits the number, but we are free to move zeros. For a given aperture size, we can
move zeros out of the invisible region into the visible region and narrow the main beam
as much as we want while maintaining low sidelobes. The invisible region represents
stored energy in the aperture. When a zero moves out of the invisible region, the
amount of stored energy and the Q of the antenna increase. The overall efficiency
of the antenna decreases while the antenna becomes more and more narrowband. We
call these arrays superdirective because their directivity exceeds that of a uniform
distribution. The Taylor line-source distribution retains the zeros in the invisible region
and prevents superdirectivity. There is no limit to the directivity achievable on paper
for a given aperture, but the theoretical distributions are unrealizable except for very
small levels of superdirectivity. The costs of superdirectivity are decreased bandwidth
and efficiency.

We will modify the location of the first 7 — 1 pairs of inner nulls to lower the
sidelobes. Choosing the zeros symmetrically about the origin of U-space gives us a
constant phase distribution. We remove the inner zeros by dividing them out of the
uniform distribution U-space pattern:

sin tU

U ]_[1:1 (1—U?/N?)

We then add new nulls U,, without becoming superdirective:

N (4-19)

Because we want to approximate the Dolph—Chebyshev response, we choose the inner

zeros from the array:
VA2 + (N = )2

Uy=nY—--——""  N=12...,7—1 (4-20)
A4 @ -y
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where A relates to the maximum sidelobe level:
cosh TtA=0b 4-21)

in which 20log b = sidelobe level. Equation (4-19) gives us the U-space (k-space)
pattern of the distribution with modified zeros. We determine the aperture distribution
by expanding it in a Fourier cosine series:

oo
E(x) = Z B,, cos2mmx x| <0.5 (4-22)

m=0
where the aperture size has been normalized. We calculate the pattern of the distribution
from the Fourier transform:

1/2

12
f(kx) Z/ E(x)ejkxx dx or f(U) — f E(x)ejh[Ux dx
~1,2

We substitute Eq. (4-22) for E(x) and reverse the order of summation and integration:

00 1/2
fW)=>" B, / cos 2mTx cos 2nUx dx (4-23)

m=0 —172

Since the aperture function is an even function, the odd-function part of the integral is
zero, as reflected in Eq. (4-23). We calculate coefficients B,, by matching the patterns
at integer values of U. The integral [Eq. (4-23)] is zero unless U = m:

By = f(0) %:f(m) m=1,2,....7i—1

Since we have only modified the location of the first 7 — 1 zeros of the U -space pattern,
f(m) =0 for m > n and the Fourier cosine series has only # components:

i1
E(x) = f(0)+2 Z f(m) cos 2mmx (4-24)

m=1

The coefficients are given by
O =1
n-1
<—1)’"_]'][N:l (1 —m*/U)
i
—2 l_IN:I,N;ém (1—m?*/N?)

Equation (4-19) computes the U-space pattern of the Taylor distribution but requires
L’Hospital’s rule at integer values of U. The finite number of coefficients B,, makes
Eq. (4-23) more convenient since the integral is easily solved:

f(m) = m=1,2,....i—1  (4-25)

S|
|

1 . . . .
l B |:sm[n(U — )] sin[n(U —|— z)]j| (4-26)
U 2 P (U —1i) (U +1i)
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Example Design the Taylor line-source distribution with 30-dB maximum sidelobes
and n = 6.
We use Eq. (4-21) to calculate A:
b =10""%" = 31.6228
_ cosh™' b

A= ———=1.3200
T

We substitute this constant into Eq. (4-20) to compute the five (n — 1) nulls:

No. ‘ 1 2 3 4 5
Null Uy ‘ 1.4973  2.1195 2.9989 3.9680 4.9747

The first null value gives us the BW,; factor (1.4973). The null beamwidth has
been increased almost 50% relative to the uniform distribution. The coefficients of the
Fourier cosine aperture distribution are found from Eqgs. (4-24) and (4-25) (Table 4-4).

Coefficients of the series are normalized so that the distribution is 1 at x = 0, and the
amplitude distribution is found by plotting the Fourier cosine series. We calculate the
U -space pattern by using Eq. (4-26). We calculate the half-power point and compare it
to the uniform distribution to determine the HPBW factor, 1.2611. By using Eq. (4-6),
we calculate ATL = 0.66 dB for the distribution.

The U-space plot (Figure 4-3) of the example above shows the 30-dB sidelobe
level. The first sidelobe is at 30dB, and lobes after that fall away from 30dB. With
a higher value of 7, the first unchanged zero, more sidelobes would be nearer 30 dB.
The dashed curve gives the pattern of a uniform distribution. Notice that the inner
five nulls have been shifted to lower the sidelobes. At the sixth null and higher, the
Taylor distribution has the same nulls as the uniform distribution. The 7 distribution has
a narrower beamwidth than the one-parameter distribution (Figure 4-2) and a higher
taper efficiency of 0.66dB versus 0.96 dB. Figure 4-4 shows the normalized aperture
voltage for 30-dB-maximum sidelobe Taylor distributions. The one-parameter design
produces a lower pedestal than the two 7 designs. The n = 20 design voltage peaks as
it approaches the edge. This peaks because the Taylor 7 distribution approximates the
Dolph—Chebyshev array that peaks at the edge of the array.

The amplitude taper efficiency was calculated for a number of designs and is given
in Table 4-5. The corresponding beamwidth factors are listed in Table 4-6 together with

TABLE 4-4 Fourier Cosine Series Coefficients for
Taylor Distribution: 30 dB, 7 =6

No. B, B,, Normalized Function
1 1.0000 0.64672 1

2 0.5733 0.37074 cos2mx
3 —0.0284 —0.01838 cos4mx
4 —0.000213 —0.000138 cos 6mx
5 0.005561 0.003597 cos 8mx
6 —0.003929 —0.002541 cos 10tx
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the null beamwidth factors (location of first zero in U-space) in Table 4-7. ATL depends
on the sidelobe level (Table 4-5) more than the number of modified zeros. Both the 20-
and 25-dB sidelobe levels show that there is an optimum number of zeros. The edge
of the distribution peaks toward the Dirac delta function and reduces the amplitude
taper efficiency. More than three modified zeros are needed to reduce the sidelobes
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TABLE 4-5 Amplitude Taper Losses of Taylor
Line-Source Distributions

Sidelobe Level (dB)
20 25 30 35 40 45 50

S|

4 017 043 0.69 095

5 015 041 0.68 093 1.16

6 015 039 066 092 1.15 137

7 015 037 065 091 1.15 136 156

8§ 016 036 063 09 114 136 1.55
10 019 034 061 088 1.13 135 1.55
12 024 034 059 086 1.11 134 154
16 035 035 057 084 1.09 132 1.53
20 046 027 056 082 1.07 130 151

TABLE 4-6 Beamwidth Factor of Taylor Line-Source Distribution

Sidelobe Level (dB)

n 20 25 30 35 40 45 50

4 1.1043 1.1925 1.2696 1.3367

5 1.0908 1.1837 1.2665 1.3404 1.4065

6 1.0800 1.1752 1.2611 1.3388 1.4092 1.4733

7 1.0715 1.1679 1.2555 1.3355 1.4086 1.4758 1.5377

8 1.0646 1.1617 1.2504 1.3317 1.4066 1.4758 1.5400
10 1.0545 1.1521 1.2419 1.3247 1.4015 1.4731 1.5401
12 1.0474 1.1452 1.2353 1.3189 1.3967 1.4695 1.5379
16 1.0381 1.1358 1.2262 1.3103 1.3889 1.4628 1.5326
20 1.0324 1.1299 1.2203 1.3044 1.3833 1.4576 1.5280

TABLE 4-7 Null Beamwidth Factor of Taylor Line-Source Distributions

Sidelobe Level (dB)

n 20 25 30 35 40 45 50

4 1.1865 1.3497 1.5094 1.6636

5 1.1696 1.3376 1.5049 1.6696 1.8302

6 1.1566 1.3265 1.4973 1.6671 1.8347 1.9990

7 1.1465 1.3172 1.4897 1.6632 1.8337 2.0031 2.1699

8 1.1386 1.3095 1.4828 1.6569 1.8306 2.0032 2.1739
10 1.1270 1.2978 1.4716 1.6471 1.8231 1.9990 2.1740
12 1.1189 1.2894 1.4632 1.6392 1.8161 1.9934 2.1705
16 1.1086 1.2783 1.4518 1.6277 1.8051 1.9835 2.1623
20 1.1023 1.2714 1.4444 1.6200 1.7975 1.9760 2.1553

below 40 dB; hence, the blanks represent unrealizable designs. The beamwidth factor
(Table 4-6) reduces with increasing 7, but it depends mainly on the sidelobe level.

Example Compute beamwidths and ATL of an 8A-wide aperture with n = 8, 40-dB
sidelobes, and a Taylor line-source distribution design.
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From Table 4-6,

1.4 76°
HPBW = w —8.92°

From Table 4-7,

1. 114.59°
Bwnull = 83067(8 > ) = 26220

From Table 4-5, ATL = 1.14dB. A square aperture with the same distribution in
both directions has

. 4nA
directivity = 10log 2 2ATL = 26.77dB

4-5 TAYLOR LINE DISTRIBUTION WITH EDGE NULLS

Rhodes [4] has shown that it is impossible to have a step discontinuity of the fields at
the edge of a physical aperture. Given the radius of curvature of the edge, p, the field
varies as

c
E; ~ —d polarized perpendicular to the aperture edge
I

C
E, ~ L polarized parallel to the aperture edge
o

where C, and C, are constants and d is the distance from the edge. Without the
possibility of an edge pedestal, a traditional Taylor line source cannot be realized with
a physical aperture. We can sample the distribution with an array or closely approximate
it, but we cannot achieve the exact distribution. A Taylor distribution with a null at
the edge can be realized in an aperture.

Rhodes [5] extended the Taylor line source by modifying the U-space pattern zeros
of the cosine distribution. Since o = 1, the far-out sidelobes drop off as 1/U 2 and the
distribution is zero on the edges. The zeros of the cosine distribution occur at

(N+1/2)m N=1,223,... k space

When the Taylor U-space variable is used, the modified U-space pattern becomes
-1 S

cosnU [ [~ (1-U*/U)

(- uAI[ ], (- U+ 5

f) = (4-27)

We remove the inner 7 — 1 zeros at N + % and substitute new ones given by

Uy ==£@+ 1)

VA + (N = )2
A ——— i (4-28)

N=12,...,n—1
= 1
A2+ (- 3)?
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When we compare Egs. (4-28) and (4-20), we see that the nulls are shifted by (n + %) /n
between the two Taylor distributions. When 7 is large, the nulls are close to the same
for the two distributions.

To determine the amplitude distribution in the aperture, we expand the aperture
fields in a Fourier cosine series,

E(x) = Z B,, cos(2m + 1)mx Ix] <0.5 (4-29)

Like the Taylor line source, there are only 7 terms in the series whose coefficients are
found by equating the pattern from the Fourier transform of Eq. (4-29) to Eq. (4-27).
The coefficients are given by

n—1
-2, - 3/uR)
- n—1

[T, [1 =4/ +47]

n—1
(=1 (m + 3) 1—(m+ 1?02
By = zz_ll_[“l[ /Ul m=1,2,... 71
[1—@m+DA]] [1—0n+ D%/ (N + 17

By

N=1,N#m
(4-30)
The U-space pattern can be found using the coefficients B,,:
n—1 . . 1 . . 1
sin[n(U —i — 5 sin[n(U +i + 5
PPN S i ALt )) WL RIS )
P (U —i—3) (U +i+5)
(4-31)
n—1 . . 1
si|[n( + 5
Co=2 S g, SN+ )
= (i + 3)

Example Design the Taylor line-source distribution with edge nulls for 30-dB max-
imum sidelobes and n = 6.
We use Eq. (4-21) to calculate A:

b =102 = 31.6228
_ cosh™'b

T

=1.32

the same as the pedestal edge Taylor line-source distribution. We substitute this constant
into Eq. (4-28) to compute the five modified nulls:

No. ‘ 1 2 3 4 5
Null Uy ‘ 1.6221 22962 3.2488 4.2987 5.3892

The null locations have increased by (7 + %) /n =6.5/6 =1.0833 from the pedestal
Taylor line-source design. The null beamwidth factor has also increased by this factor
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as well. The coefficients of the Fourier cosine aperture distribution are found from
Eq. (4-30) Table 4-8.

The normalized coefficients sum to 1 at x = 0. Equation (4-27) determines the U-
space pattern given the nulls. On finding the half-power point and comparing it with
the uniform distribution half-power point, we compute the beamwidth factor: 1.3581.
Tables 4-9 to 4-11 give results for this Taylor line source. As 7 increases, the results
approach the result of the pedestal Taylor line source. Since the maximum sidelobe
of the cosine distribution is 23 dB, a distribution must have peaking toward the edges
to raise the sidelobes above that level. In all distributions the voltage approaches zero
linearly at the edges.

TABLE 4-8 Fourier Cosine Series Coefficients for
Taylor Distribution with Edge Nulls: 30dB, 7 = 6

No. B, B,, Normalized Function
1 0.50265 0.94725 COS TTX

2 0.023087 0.04351 cos 3mx
3 0.017828 0.02220 cos 5Ttx
4 —0.010101 —0.02075 cos 7mtx
5 0.007374 0.01390 cos 9mx
6 —0.003245 —0.006116 cos 11mx

TABLE 4-9 Amplitude Taper Losses of a Taylor
Line Source with Edge Null Distribution

Sidelobe Level (dB)

25 30 35 40 45 50

S|

0.86 1.13 1.36 1.55 1.71 1.84
0.67 0.97 1.24 1.47 1.66 1.84

8 0.56 0.87 1.14 1.39 1.60 1.79
12 0.45 0.74 1.02 1.28 1.51 1.71
16 0.41 0.68 0.96 1.22 1.45 1.66
20 0.39 0.64 0.92 1.17 1.41 1.62

N &~

TABLE 4-10 Beamwidth Factor of a Taylor Line
Source with Edge Null Distribution

Sidelobe Level (dB)

25 30 35 40 45 50

S|

4 1.3559 1.4092 14815 1.5443 1.5991 1.6470
6 1.2666 1.3581 1.4407 1.5153 1.5831 1.6448
8 1.2308 1.3242 1.4097 1.4882 1.5608 1.6280
12 1.1914 1.2850 1.3716 1.4522 1.5276 1.5984
16 1.1705 1.2635 1.3500 1.4308 1.5068 1.5785
20 1.1576 1.2502 1.3363 1.4170 1.4930 1.5649
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TABLE 4-11 Null Beamwidth Factor of a Taylor
Line Source with Edge Null Distribution

Sidelobe Level (dB)

n 25 30 35 40 45 50

4 15184 1.6980 1.8715 2.0374 2.1949 2.3433
6 14371 1.6221 1.8060 1.9875 2.1656 2.3395
8 1.3913 1.5755 1.7604 1.9450 2.1284 2.3097
12 1.3431 1.5242 1.7075 1.8918 2.0765 2.2610
16 13182 1.4971 1.6786 1.8616 2.0455 2.2298
20 1.3031 1.4805 1.6605 1.8424 2.0254 2.2091

4-6 ELLIOTT’S METHOD FOR MODIFIED TAYLOR DISTRIBUTION
AND ARBITRARY SIDELOBES [6, pp. 162-165]

Elliott’s method separates the distribution nulls into right- and left-hand values in U-
space that allows different sidelobe levels in the two regions. By applying a differential
expression, the null positions in U-space can be found from the solution of a set of
linear equations to produce designs with arbitrary sidelobes. Consider Eq. (4-19) and
factor the null location term:

() (o) = () (- )

Uy Uy Unt Unr
We associate Uy, with a nulls on the left side of the origin and Uyg with the right
side or a positive pattern angle. If we also separate the term in the denominator of

Eq. (4-19), we can independently pick the number of nulls to be moved on either side
of the pattern:

1 —

| S

ﬁLfl ﬁkfl
sintU ]_[N=1 (1+U/Uy) ]_[N=1 1—=U/Uy)

np—1 nr—1
U ]_[N:1 (1+U/N) ]_[N:1 (1—U/N)

FU)=Cy (4-32)

Equation (4-32) allows different Taylor distributions on the two sides. We add a nor-
malization factor Cy when we use different distributions. The pattern peak will shift
off zero for unbalanced distributions. Since the two sides are not independent, a simple
selection of the two levels will not produce the desired sidelobes. Table 4-12 lists the
U-space locations of the pattern peaks and sidelobe level for a design with 35- and
30-dB sidelobes. The left distribution lowered the sidelobes on the right and the right
one raised the left sidelobes. A few manual iterations produced suitable left and right
distributions to give the desired sidelobes. The main beam shifts a little bit. A linear
progressive phase shift across the aperture can shift the pattern to broadside.
We expand the aperture distribution in a complex exponential series similar to
Eq. (4-22):
fir—1
Ex)= Y  Be ™ |x]<05 (4-33)

i=—T 41
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TABLE 4-12 Modified Taylor Distribution Sidelobes for Independent Left and Right
Sidelobe Design Using 77 = 6 for Both Sides

Left-Side—35-dB Right Side—30-dB Left-Side—36-dB Right-Side—28.6-dB
U-Space Sidelobe (dB) U-Space Sidelobe (dB)
—5.4849 —35.70 —5.4874 —36.00
—4.4905 —35.06 —4.4976 —35.44
—3.5275 —34.66 —3.5399 —35.11
—2.6313 —34.44 —2.6510 —34.97
—1.8997 —34.39 —1.9293 —34.99
—0.0511 0 —0.0758 0

1.7546 —31.05 1.7141 —30.05
2.5372 —31.45 2.5119 —30.55
3.4697 —32.00 3.4544 -31.19
4.4584 —32.74 4.4498 —32.02
54711 —33.75 5.4676 —33.13

We calculate the coefficients by the same method used for Eq. (4-25):

B(0) =1
(=DM TN ‘<1+m/UN>]'[ (1= m/Uy)
Bim) = —=—
‘HN=1,N¢ (1 +m/N)1_[N v L= m/N)
m=—-n,+1,...,—1,1,2,..., g — 1 (4-34)

We derive the pattern from the integral of the finite complex exponential:

"l Sin[n(U - i)]

f)=C Y B———" T (4-35)
i=—np+1

We include the normalization factor Cy for unequal left and right sidelobes.

We control the sidelobes by adjusting the location of the nulls in the U-space pattern.
We can iterate the null positions to produce individually selected sidelobes. The peak
of each sidelobe given in Table 4-12 was found through a one-dimensional search
between pairs of nulls. A search based on the Fibonacci numbers [7, p. 280] computes
the peak with the minimum number of evaluations of the pattern using Eq. (4-35).
We denote the pattern peaks by Uy, starting with the peak between —7; and U_z, 41,
those between nulls, the peak near 0, and the last peak between Ug,_; and ny for
np+ng—1.

We adjust the U-space nulls by the differentials §Uy found from the solution of a
matrix equation. The terms of the matrix are the differential term of a Taylor series
expansion of the numerator of Eq. (4-32) evaluated at the pattern peaks:

Un/ Uy _ _
am,nzip N:—nL+1,...,—l,1,...,nR—l
1_Um/UN

amo =1 (4-36)
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The vector of differential nulls is
8U=[8U_5,41,...,8U_1,8C/Cy,8U; ..., 8Uxz, 11"

where 8C/Cy is the change in the pattern normalization. We form a vector using
the ratio of the desired pattern peak f;(U) to the actual pattern f,(U) with terms
[f2(UMY/ f. (U] — 1. We solve the matrix equation for the null shifts:

up !
[(lm,n]_l [;dEUp; — 1i| = [(SUN] (4-37)

We calculate new distribution nulls Uy + §Uy, substitute the new nulls into Eq. (4-34) to
determine the new expansion coefficients B,,, and evaluate the pattern using Eq. (4-35)
between the new nulls to compute new pattern peaks. We iterate the process until the
sidelobe levels are satisfactory. Notice that f(U) is a voltage.

The Taylor linear distribution produces a pattern with only approximately equal
sidelobes. Table 4-13 lists the iteration to produce a distribution with a pattern that
has five 30-dB sidelobes. The solution starts with a 30-dB, 77 = 6 Taylor distribution.
In two iterations the method found a distribution with exactly the desired sidelobes.
Table 4-14 gives the results of repeating the example of Table 4-12 of the design for 35-
and 30-dB sidelobes. This method can produce a linear distribution with individually

TABLE 4-13 Iteration of Distribution Nulls for a Pattern with 30-dB Sidelobes

Taylor Distribution First Iteration Second Iteration

Null U-Space Sidelobe | Null U-Space Sidelobe | Null  U-Space Sidelobe

1.4973  1.7557 —-30.22 | 1.4708  1.7258 —30.00 | 1.4729  1.7284 —30.00
2.1195  2.5387 —30.46 | 2.0827  2.4987 —29.99 | 2.0859  2.5027 —30.00
2.9989  3.4709 —30.89 | 2.9490 34215 —29.96 | 29541 3.4274 —-30.00
3.9680  4.4591 —31.53 | 3.9075 4.4072 —29.86 | 3.9152 44147 -30.00
4.9747 54718 —3248 | 49145 54424 —29.63 | 49242  5.4471 —29.99

TABLE 4-14 Iteration for 35- and 30-dB Sidelobes in Linear Distribution

Left-Side—36-dB  Right-Side—28.6-dB Second Iteration
U-Space Sidelobe (dB) Null U-Space Sidelobe (dB) Null
—5.4874 —36.00 —4.9964 | —5.4798 —35.00 —4.9778
—4.4976 —35.44 —4.0169 | —4.4859 —35.00 —4.0043
—3.5399 —35.11 —3.0845 | —3.5348 —35.00 —3.0829
—2.6510 —34.97 —2.2583 | —2.6555 —35.00 —2.2670
—1.9293 —34.99 —1.7008 | —1.9410 —35.00 —1.7143
—0.0758 0 —0.1037 0
1.7141 —30.05 1.4495 1.6615 —30.00 1.4023
2.5119 —30.55 2.0883 2.4475 —30.00 2.0249
3.4544 —-31.19 2.9801 3.3839 —30.00 2.9049
4.4498 —32.02 3.9574 4.3839 —30.00 3.8780
5.4676 —33.13 4.9699 5.4313 —29.98 4.9001
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selected sidelobes. It may be necessary to design an intermediate distribution if the
change in sidelobes is too great for the simple iteration scheme to converge. We will

design linear arrays by a similar technique of manipulating pattern nulls to produce
arbitrary sidelobes.

4-7 BAYLISS LINE-SOURCE DISTRIBUTION (8]

The Bayliss distribution produces a pattern null on a boresight while controlling the
height of the sidelobes. The second dashed curve in Figure 4-5 below is a Bayliss
difference pattern also designed to give 30-dB sidelobes when combined with the
Taylor distribution. As in the Taylor distribution, the first few sidelobes are nearly the
same height, to minimize the beamwidth of the two beams split about the boresight.
A monopulse tracking system uses an auxiliary pattern with a boresight null coin-
cident with the beam peak of the main pattern. The tracking system drives the antenna
positioner until the signal in this difference channel nulls so that the main channel (sum)
points at the emitter or radar target. The accuracy of the pointing angle is improved,
since a null is a more exact direction than the broad sum pattern peak. Noise and
receiver sensitivity, along with the slope of the difference pattern, limit the tracking
accuracy. Stronger signals can be tracked farther into the null. Because the phase of a
pattern shifts by 180° when passing through a null, phase relative to the sum pattern
(a reference signal) can be used to give direction. Without monopulse or some other
sequential lobing technique, such as conical scan, radar cannot track effectively.

7~ "\
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FIGURE 4-5 Taylor and Bayliss line distributions to give 30-dB sidelobes (n = 6).
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Any odd-function distribution produces a null on a boresight. A uniform distribution
that switches phase by 180° in the center has the best amplitude taper efficiency but
high sidelobes (10 dB). These high sidelobes allow interfering or noise signals to enter
the receiver. The Bayliss distribution adjusts the inner nulls of the U-space pattern to
lower the sidelobes. Adjusting the zeros to correspond to the Dolph—Chebyshev array
does not lower the sidelobes to the same level as it did in the Taylor distribution.
Further adjustments of the four inner zeros are required. Bayliss found the proper
location through a computer search. We locate the zeros by

N £y
44 N=1,23,4
R e
Uy = (4-38)
A+ N?
n+dy [ ———— N=5.6,....,n—1
X yrepne

By using the U-space pattern, we have

n—1
1-U?/U?
f(U) =UcosU 1_[11\/=1( )

[, [1-vav+ 5]

The coefficients were fitted to polynomials depending on the sidelobe level. Given
S = |sidelobe level(dB)|:

(4-39)

A =0.3038753 4 5(0.05042922 4 S(—0.00027989

+ 5(0.343 x 107> — 5(0.2 x 1077)))) (4-40a)
£ = 0.9858302 4 5(0.0333885 + S(0.00014064

+ 8(—0.19 x 107> 4 5(0.1 x 1077)))) (4-40D)
£ = 2.00337487 + S(0.01141548 4 §(0.0004159

4 8(—0.373 x 1075 + (0.1 x 1077)))) (4-40¢)
£ = 3.00636321 + 5(0.00683394 + §(0.00029281

+ S(—0.161 x 107%))) (4-40d)
£, = 4.00518423 + 5(0.00501795 + §(0.00021735

+ S(—0.88 x 107%))) (4-40¢)

The location of the pattern peak was also fitted to a polynomial:

Umax = 0.4797212 + 5(0.01456692 + S(—0.00018739
+ 5(0.218 x 1075 + §(=0.1 x 1077)))) (4-41)

We obtain the aperture distribution by a Fourier sine series having only 7 terms:

E(x)= ) Bysin(m+ H2nx  [x| <05 (4-42)
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where -
_qym 12 T = m+ 20
B, — D (2";+2) ZE[N=1[ m+ )/ Uj] (4-43)
[T 1=+ +5)7]
N=0,N#m

The phase constant (—j) has little effect on the coefficient B,, except to balance the
phase +90° about the null.

Example Design a Bayliss distribution with 30-dB sidelobes and n = 6.
Use Eq. (4-40) to compute the coefficients.

A =1.64126 & =2.07086 & =2.62754 &3 =3.43144 &4 = 4.32758
We substitute these constants into Eq. (4-38) to calculate the five (n — 1) nulls:

No. ‘ 1 2 3 4 5
Null Uy ‘ 2.1639 2.7456 3.5857 4.5221 5.4990

Equation (4-41) computes the beam peak of the split-beam pattern in U space:

k
U = 0.7988 7“ $in Oy = Uy = 2.5096

where a is the aperture width. We substitute these zeros into Eq. (4-43) to determine
the coefficients of the Fourier sine series of the aperture distribution (Table 4-15). By
evaluating the series across the aperture, the coefficients can be normalized to give a
maximum aperture voltage of 1.

We use Eq. (4-39), after substituting the zeros, to evaluate the pattern. The 3-dB pattern
points can be found by searching the pattern:

k k
7" sinf, = 1.27232 7“ sin6, = 4.10145

Figure 4-5 contains the plot of a Bayliss distribution (7 = 6) designed to have
sidelobes 30dB below the Taylor distribution with 30-dB sidelobes. The losses to the
difference pattern are about 2 dB higher than the sum pattern. We design the Bayliss

TABLE 4-15 Fourier Cosine Series Coefficients for
Bayliss Distribution: 30dB, 7 = 6

No. B, B,, Normalized Function
0 0.13421 0.85753 sin TTx

1 0.081025 0.51769 sin 31tx
2 —0.0044151 —0.028209 sin 57x
3 0.001447 0.0092453 sin 77tx
4 —0.0003393 —0.0021679 sin 9mtx
5 —0.000014077 —0.00008994 sin 117tx
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distribution to have 28-dB sidelobes. If designed for 30-dB sidelobes as in the example
above, then, relative to the sum Taylor distribution, the sidelobes would be 32 dB down
from the sum pattern peak. The last nulls show that the unmodified zeros of the Taylor
distribution occur at +nw, whereas the unmodified zeros of the Bayliss distribution
occur at +=(n + %)n.

By using Eq. (4-6), we calculate amplitude taper efficiency of the pattern at the
beam peak. When we evaluate the phase error efficiency by using Eq. (4-7), the result
is zero because of the boresight null. We use Eq. (4-3) to evaluate the phase error
efficiency at the beam peak:

a/2 2
‘/ E(x)ejksinﬂm,xx dx
_ —al2

a2 2
[/ |E(x)| dx]
—a/2

Table 4-16 lists results of calculations on Bayliss distributions with 77 = 10 for various
sidelobe levels. Lower sidelobe levels produce higher distribution losses and push the
beam peak out. The position of the beam peak is independent of 7, since the first four
zeros are fixed by Eq. (4-40). Like the Taylor distribution, the sidelobe level determines
most of the parameters of the Bayliss distribution. Changing 7 has less effect than it
has for the Taylor distribution. The values of parameters for distribution with 7 # 10
will differ little from those in Table 4-16.

PEL (4-44)

Example Compute the beam peak and beam edges for an 8i-wide aperture excited
in a Bayliss distribution with 7 = 10 and 30-dB sidelobes.

27 . 8A
T sin 9max7 = 2.5096
. 2.5096
SinOpx = ——
81
. 1.263 . 4.071
sinf; = —— sinf, = ——
8w 81

Omax = 5.73° 6, = 2.88° 6, = 9.32°

TABLE 4-16 Characteristics of a Bayliss Line-Source Distribution with 7 = 10
Parameters

Sidelobe Beam Peak, 3-dB Edge
Level (dB) ka/2 sin O,y ka/l2 sin 6, kal2 sin 6, ATL (dB) PEL (dB)
20 2.2366 1.140 3.620 0.50 1.81
25 2.3780 1.204 3.855 0.54 1.90
30 2.5096 1.263 4.071 0.69 1.96
35 2.6341 1.318 4.270 0.85 2.01

40 2.7536 1.369 4.455 1.00 2.04




162 APERTURE DISTRIBUTIONS AND ARRAY SYNTHESIS

4-8 WOODWARD LINE-SOURCE SYNTHESIS [9]

In the preceding sections, methods to determine distributions that give the minimum
beamwidth for specified sidelobe levels were discussed. Some applications require
shaped beams extending over a range of angles. The Woodward synthesis samples
the desired k-space pattern at even intervals to determine the aperture distribution. No
integrals are required to compute coefficients.

The technique is based on the scanned pattern of a uniform amplitude distribution.
Express the pattern in terms of U-space so that when scanned to U, it becomes

sint(U — Up)
(U — Uy)

with the nulls of the pattern occurring at integer values of U — Uj.
a a
U = —sin6 Uy = —sin by
A A

The visible region extends between +a and —a, centered about U.

Figure 4-6 shows two patterns, scanned to Uy = 1 and Uy = 2. The peak of the
curve scanned at Uy = 2 occurs at one of the nulls of the pattern scanned to Uy = 1.
If we allow only integer values of U), the pattern scanned to Uy solely determines the
pattern at the point Uy in U-space. The two curves (Figure 4-6) in the regions below
U = 0 and above U = 3 cancel each other to some extent when the distributions are
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FIGURE 4-6 Scanned uniform distributions: Uy = 1 and U, = 2.
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added. We form the aperture distribution from a sum of 2a/A + 1 independent sample
points of scanned apertures:

N
E(x)= Y Epe o (4-45)
i=—N
where N = integer part (a/A). Each term is a uniform amplitude distribution scanned

to an integer value of U. The amplitudes E; are determined by the sample values of
the U-space pattern at those points.

Example Design a 10\ aperture with a constant beam between § = 0° and 8 = 30°.
The nonzero portion of the U-space pattern extends from U; = 10sin0° =0 to U, =
10sin30° = 5.

When we sample the U-space pattern, we discover six nonzero terms:

i ‘ 0 1 2 3 4 5
E; 105 10 10 10 10 05

At Uy =0 and U, = 5, we use the average value. The aperture distribution is
0.5+ efjx/a +efj2x/a +efj3x/a +efj4x/a +0.5€7j5x/a
The U-space pattern of this distribution (Figure 4-7) shows some ripple in the beam

and the reduction to 6 dB at the beam edges. If we increased the sample level at the
edges, U = 0 and U = 5, the pattern would increase to that level.

a

o /

Level, dB

wlanl\ V

10 -8 -6 4 2 0 2 4 6 8 10
% sin @

FIGURE 4-7 U-space pattern of Woodward—Lawson sampling for constant beam from 0 to
30° (10 aperture).
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A cosecant-squared power pattern can be designed by the same method as in the
preceding example. When an antenna with this pattern on the ground points its max-
imum toward the horizon, it delivers a constant signal to an aircraft that maintains a
constant altitude. The pattern falloff matches the range decrease as the aircraft flies
toward the antenna. The voltage pattern is given by

Sin Gpax

" sin6
where O,,« is the angle of the pattern maximum. In U-space this becomes

Uﬂ'l

E(W) = Ey;

The amplitudes of the scanned apertures decrease as 1/U.

Example Design a 10 aperture with a cosecant-squared pattern from 6 = 5° to
6 = 70° with the maximum at 5°.

There are 2a/X + 1 possible sample points (21). The nonzero portion of the U-space
pattern extends from Uy, = 10sin5° = 0.87 t0 Upax = 10sin 70° = 9.4. We sample
only at integer values of U, which gives us nine nonzero terms: U,, = 0.8716. The
coefficients are given in Table 4-17.

The sum [Eq. (4-45)] for this distribution contains nine terms.

9
E(x) = Z E;e~//ax
i=1

Figure 4-8 shows the amplitude and phase of this aperture distribution. The pattern
obtained by summing the scanned aperture distributions (Figure 4-9) shows ripple
about the desired pattern. Increasing the aperture size increases the number but does
not change the level of ripples. The aperture distribution (Figure 4-8) has a negative
phase slope to scan the beam off broadside.

4-9 SCHELKUNOFF’S UNIT-CIRCLE METHOD [10]

Schelkunoff’s unit-circle method consists of the manipulation of the zeros (nulls) of
the array pattern to achieve a desired pattern for a line array. The method is similar
to designing networks by specifying the placement of poles and zeros in the complex
plane, but the array has only zeros to manipulate. We can use the representation to
describe any uniformly spaced array.

TABLE 4-17 Woodward Synthesis Coefficients of
101 Cosecant-Squared Pattern

i E[ i E,‘ i Ei
1 0.8716 4 0.2179 7 0.1245
2 0.4358 5 0.1743 8 0.1089

3 0.2905 6 0.1453 9 0.0968
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FIGURE 4-8 Aperture distribution of Woodward—Lawson sampling for cosecant-squared pat-
tern (104 aperture): (a) aperture amplitude distribution; (b) aperture phase distribution.

Consider a uniformly spaced array along the z-axis with the pattern angle 6 measured
from the axis. The array response will be symmetrical about the z-axis. If we define
the variable Y = kd cosf 4§, where § is a fixed progressive phase shift between
elements, d the element spacing, and k the wave number (271/A), the pattern of the
array is given by

E=1Iy+ eV + Le!? 4+ Lel™ ... (4-46)
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FIGURE 4-9 U-space pattern of 101 aperture Woodward—Lawson sampling for a
cosecant-squared pattern.

where I;, a phasor, is the excitation of the ith element in the array. We simplify the
notation further by defining A
W =elV (4-47)

We then write Eq. (4-46) as
E=I+ LW+ LW>+ LW+ + Iy whN! (4-48)

where N is the number of elements in the array. We use the first element as our phase
reference point. This array factor (isotropic elements) is a polynomial with N — 1 roots
(zeros) for N elements.

We denote the roots as W; and rewrite Eq. (4-48) as

E=E(W-W)W—=W)---(W—=Wy_y)
We can ignore the normalization E( and compute array pattern magnitude as
IEW)| =W = Wi[[W — W] [W — Wy_]

where |W — W;| is the distance from the root W; to W in the complex plane. W
is limited to the unit circle [Eq. (4-47)] because it always has unit value. Both the
spacing of the elements and the progressive phase shift § determine the limits of the
phase of W:

0=0° Yy =kd +6 start
f = 180° Yr=—kd+$§ finish (4-49)
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FIGURE 4-10 Unit circle in the W-plane.

As 0 increases, ¥ decreases and W progresses in a clockwise rotation along the unit
circle (Figure 4-10). We have no 27 limitation on either ¥, or ;. The element spacing
determines the number of times W cycles the unit circle as 6 varies from 0 to 180°.
If ¥y — vy, 2kd, exceeds 27, there is a possibility of more than one main beam
(grating lobes).

The zeros W;, suppress the pattern when W moves close to one or more of them. The
pattern rises to form a lobe when W is far from the zeros. The main-beam peak occurs
at the point with the maximum product of the distances from the zeros. Whenever W
passes through that point, another main beam forms. A uniformly fed array has the
W-space polynomial

_ N

f(W) = T—w for N elements

The zeros of f(W) are the N zeros of WY =1 with the zero at W = 1 removed:
W; = e/?™/N_These are spaced uniformly on the unit circle.

Figure 4-11 shows the unit circle diagram of a 10-element array fed with uniform
phase and amplitude. W starts at —1 since d = 1 /2, and it progresses clockwise around
the unit circle one revolution to the same point as 6 varies from 0 to 180°. At § = 90°,
the product of the distances from the zeros is a maximum. A lobe forms within the
space between each pair of zeros. As W moves from the start to the main beam at
W =1, it starts at a zero and passes through four additional zeros. These zeros W;
correspond to the nulls in the pattern from 8 = 0° to & = 90°. An equal number of
nulls occur as W moves through the range 6 = 90 to 180°.

A uniform-amplitude end-fire array can be represented on the same unit-circle dia-
gram. With antenna elements spaced A/4, the excursion from start ¥ fo finish v is
only m(2kd). A progressive phase shift § of —kd through the array forms an end-fire
pattern. From Eq. (4-49), ¥, = 0° and ¢, = 180°. The end-fire array pattern has only
five nulls, including the null at & = 180° as @ ranges from 0 to 180°, since only five
zeros occur in the visible region.
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FIGURE 4-11 Unit-circle representation of a 10-element array with A/2 spacings.

The Hansen and Woodyard increased-directivity end-fire array corresponds to a
shift in the start and stop locations on the unit circle. The excursion from start to
finish remains 7 determined by element spacing. Equation (4-49) calculates the start:
¥, = 90° — 108° = —18°. The pattern has five nulls from 6 = 0 to 180°.

A binomial array has all its zeros at W = —1 and its pattern has no sidelobes,
since they occur for points on the unit circle between zeros. Only one beam forms
as W traverses the unit circle. The W-space polynomial is f(W) = (W 4 1)V~!. For
an array of given size we can manipulate the location of the nulls either to reduce
sidelobes or to place pattern nulls. We reduce a sidelobe by moving the zeros on both
sides of it closer together, but either the main-lobe beamwidth increases or the other
sidelobes rise. We form a null in the array pattern by moving one of the zeros to that
point on the unit circle corresponding to W at the null angle. Given a desired null 6,

Wi — ej(kdcose,,+5) (4_50)

Equation (4-50) gives the phase angle kd cos8, 4+ § of the zero required on the unit
circle in W-space.

In the case of an end-fire array in which the spacing between elements is less than
A/2, we can shift zeros from invisible space into visible space to narrow the beam and
reduce sidelobes. We thereby form large lobes in invisible space that represent energy
storage in the array. The large energy storage reduces the bandwidth and efficiency of
the array. This super-directivity method has limited success, although we can produce
beautiful patterns on paper.

Example Design a four-element array of broadcast towers to give nearly uniform
coverage for § = £45° with nulls at § = 270° and 135° [11, p. 69].

We will align the array with & = 0° to obtain symmetry for the +45° requirement.
We actually need only three elements, since only two nulls are specified. Using A/4
spacings, we set § = —90° to get an end-fire array. Equation (4-50) gives the zeros of
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the polynomial required for the pattern nulls.

360° i o .
W Y = ——-=1c0s(270") — 90" = —-90
A 4
360° A
W, : Y= 1 cos(135%) — 90° = —153.64°

We determine the polynomial from the roots:

F(W) = (W — e /%0 ) (W — ¢ /15364
= W2+ 1.6994W /518 4 /11636

We normalize the phase to the first element of the array [constant term of f(W)]:
FW) = W2e /11035 4 1.6994We /1818 1

At this point the polynomial representation of the array f(W) does not include the
progressive phase factor § = —90°. We add the factor to the polynomial by adding
—90° to the phase of the second element (W term) and —180° to the third element
(W? term):

W) = W2 2636 4 1.6994We /14818 4

The coefficients of the polynomial are the voltage (or current) components of the
array. No null develops at & = 180° because the two available nulls (N — 1) were
used. Adding the fourth element gives us the freedom to improve the response flatness
in the +45° region of . Figure 4-12 shows a unit-circle representation and pattern to
give a nearly equal ripple response between +45° and the required nulls. We increase

6 =180°

FIGURE 4-12 Four-element linear array with pattern nulls at & = 90, 135, and 180°. The
elements are spaced at 0.35A to give a flat response +45°.
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TABLE 4-18 Four-Element 0.35\ Spaced-Array
Coefficients for Uniform Beam +45°

Amplitude Phase
No. (dB) (deg)
1 -9.50 0.0
2 —4.11 —103.3
3 —4.11 138.4
4 —9.11 35.1

the spacing to 0.354 and place the pattern nulls at 90°, 135°, and 180°. W starts at +1
on the unit circle or ¥, = 0° and determines §:

360° o
Yy =0=kd+6 or 6=—kd= —TO.SSA = —126

We compute the phase of the zeros from Eq. (4-50):

Y1 = 360°(0.35) cos(90°) — 126° = —126°
¥ = 360°(0.35) cos(135°) — 126° = —215.1°  (144.9°)
W3 = 360°(0.35) cos(180°) — 126° = —252°  (108°)

By following the same steps as above, we compute the phase and amplitude of the
array elements (Table 4-18).

4-10 DOLPH-CHEBYSHEYV LINEAR ARRAY [2]

The Chebyshev polynomials have equal ripples in the region x = %1, and the amplitude
varies between +1 and —1. Outside that region the polynomial value rises exponen-
tially:
(=1)" cosh(mcosh™! |x|) x < —1
T,,(x) = { cos(m cos™! x) —1<x<l1
cosh(m cosh™ x) x> 1

The order of the polynomial m equals the number of roots. Dolph devised a method
of relating the Chebyshev polynomials to the array factor polynomial for a broadside
array. We scale the polynomial to make the equal-ripple portion the sidelobes and
the exponential increase beyond x = 1 becomes the main beam. Take an array fed
symmetrically about the centerline that has either 2N + 1 or 2N elements. We expand
the array factor in a polynomial with factors cos(y//2), where ¥ = kd cos6 + §. The
beam peak occurs when i = 0. If we make this correspond to a value xy, where the
Chebyshev polynomial has a value R, the sidelobes will be equal to the ripple at the
level 1/R. By substituting x = xy cos(y/2), we use the Chebyshev polynomial for the
array polynomial with

h™'R
Tn(xo) =R or xp= cosh 2 % 4-51)
m
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where 20 log R is the desired sidelobe level in decibels. The zeros of T,,(x) are given

by
2p— D=

X, = £ cos
P 2m

(4-52)
By using the equation x, = xocos(y//2) = xo(e/¥/? + e=/¥/2), we calculate the angles
of the symmetrical zeros in the W-plane:

¥, = +2cos™! 2 (4-53)
X0

Both values of x, [Eq. (4-52)] give the same v, pair. Given the zeros in the W-plane,
we multiply out the root form of the polynomial to calculate feeding coefficients of
the array.

Example Design a 10-element array with 25-dB sidelobes.
The array has nine nulls, so we pick m = 9 for the Chebyshev polynomial.

[Eq. (4-51)] R =10%/=177828  xy = 1.0797

We need only the first five zeros, since they are symmetrical about zero. We calculate
them from Eq. (4-52), divide them by xq, and use Eq. (4-53) for their angles on the unit
circle of the W-plane (Table 4-19). We multiply out the root form of the polynomial for
the voltage (current) feeding coefficients of the array. Because the roots are symmetrical
about the real axis, all phase angles are zero. We obtain the following coefficients:

Nos. ‘ 1,10 2,9 3,8 4,7 5,6
Coefficient (dB) ‘ —8.07 =592 284 -092 0.0

Figure 4-13 shows the unit-circle representation and pattern of the array with A/2
spacing.

We can estimate the beamwidth of a Chebyshev array by using a beamwidth
broadening factor and the beamwidth of a same-length uniformly fed array [12]. The
beamwidth broadening factor is given by

2 2
f=1+0.632 [E cosh \/ (cosh™ R)? — WZ} (4-54)

TABLE 4-19 Chebyshev Polynomial Roots and
W -Plane Roots for 10-Element 25-dB Sidelobe Array

vy
p X, (deg)
1 0.9848 +48.41
2 0.6428 +106.93
3 0.3420 +143.06
4 0.0 180.00
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FIGURE 4-13 Ten-element Chebyshev array designed for 25-dB sidelobes.

Equation (4-54) is valid in the range of sidelobe levels from 20 to 60dB and for
scanning near broadside.

Example Compute the broadside beamwidth of a Dolph—Chebyshev array with 61
elements, a 30-dB sidelobe level, and A/2 spacings.

Equation (4-54) gives the value 1.144 for f using R = 1030/%0,

We estimate the beamwidth of the uniform array from HPBW = 50.76°A/Nd =
1.66°, where d is the element spacing:

HPBW 0y = (f)HPBW yiform = 1.144(1.66°) = 1.90°
We use the beam-broadening factor to estimate the array directivity:

2R?
D =
1+ (R2=1)fr/Nd

(4-55)

Example We calculate the directivity of the 61-element array above from Eq. (4-55).
D =52.0 (17.2dB).

If we take its limit as Nd — oo, Eq. (4-55) becomes 2R?. An infinite Dolph—
Chebyshev array has a gain 3 dB more than the sidelobe level.

4-11 VILLENEUVE ARRAY SYNTHESIS [13]

Villeneuve devised a method similar to the Taylor distribution that modifies the 77 — 1
inner zeros of a uniform amplitude array to lower sidelobes. Since the positions of
the outer zeros remain fixed, the outer pattern sidelobes decrease as 1/U. The uniform
distribution W-plane zeros are located uniformly around the unit circle except for
W=1: 5
1,/fp = P
N,

(4-56)
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The inner zeros correspond to the Chebyshev zeros [Eq. (4-53)] except that we multiply
them by a constant factor o dependent on the number of elements, the sidelobe level,
and n: —
nm
o=
N, cos~' {(1/x0) cos [ (2 — 1)7t/2m]}

(4-57)

The order of the Chebyshev polynomial m = N./2. We use Eq. (4-51) to compute x.

Example Design a 10-element Villeneuve array containing 10 elements for 25-dB
sidelobes and 7 = 4.

We determine o = 1.00653 using Eq. (4-57). The inner three W-plane zeros are
found by multiplying the Chebyshev zeros by o, which occur in pairs, and the next
three zeros are found from the uniform amplitude array using Eq. (4-56):

¥, £48.73 +73.82 + 107.63 + 144 180
Figure 4-14 illustrates the W-plane and pattern of the 10-element Villeneuve array:

Nos. ‘ 1, 10 2,9 3,8 4,7 5,6
Coefficient (dB) ‘ —844 585 -291 -091 0.0

The sidelobes drop off instead of staying constant: —25.08, —25.19, —25.43, —26.14.

4-12 ZERO SAMPLING OF CONTINUOUS DISTRIBUTIONS [14]

We sample continuous distributions, such as the Taylor line source, for large arrays.
By using that method, we avoid the numerical difficulties of multiplying out long
polynomials. When a small array samples an aperture distribution, its pattern fails to
follow the pattern of the distribution. We improve the pattern by matching the zeros of
the array to the distribution nulls. The array -space pattern repeats at 27 intervals,
but the k-space pattern of the aperture has no repeat. We space elements by A/2 to

FIGURE 4-14 Ten-element Villeneuve array designed for 25-dB sidelobes, n = 4.
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span the total ¥-space nonrepeating region. We then equate an array with A/2 spacings
to an aperture of the same length regardless of the actual spacings between elements.
Since the array samples a continuous distribution, the aperture is Nd long, where d is
the distance between array elements and we consider the array element to be sampling
d/2 on both sides of its location.

Consider the U-space pattern of a uniform aperture distribution: sin tU/nU. The
aperture zeros occur at integer values of U. The corresponding zeros of the uniformly
fed array are W; = ¢/2™/N where i = 1,2,..., N — 1. The Taylor distribution modi-
fies the location of the zeros of the uniform distribution to U;, and the sampled zeros
of the array must move to follow this pattern:

VV,- — e.jZnU[/N (4-58)

Example Given a Taylor line source with 30-dB sidelobes and n = 6, compute the
zeros of an array with 12 elements to sample the distribution.

The array spans 12/2 in U-space. We calculate zeros of the distribution from
Section 4-4 and the angles of the array zeros from Eq. (4-58):

+1.473 £2.1195 £29989 £39680 £4.9747 6
+44.19 £63.58 £89.97 £119.04 =£149.24 180

U;
Vi

We multiply out the root form of the polynomial to compute the array feeding coef-
ficients. The array has 30-dB first sidelobes. A straight sampling of the distribution
gives an array whose sidelobes exceed 30 dB.

Figure 4-15 shows the unit-circle diagram of a zero-sampled Taylor line source with
25-dB sidelobes and 7 = 5. The method places the zeros on the unit circle close enough
together to limit the sidelobe peaks to less than 25dB when W for a given pattern
direction lies between the zeros. The array has higher sidelobes than the equivalent

15 o -15
30\ eeee oo -30
45/ SO\-45
60/ 7, > \-60
;

l’ “
75/ L \-75

A 1Y

sf
%0 90
F

" ] 2 /
105{7% - ~ 7J-105
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/

a
a 3 '

1205 " J~120

& 135N /"’ 135

150~ [ {2150
16575 -165

FIGURE 4-15 Twelve-element array designed by zero-sampling 25-dB Taylor distribution:
pattern of normal array (solid curve); pattern with null filling by moving three zeros off unit
circle (dashed curve and triangles).
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aperture, but closer to the specified 25dB, because the finite array cannot control
sidelobes as well as the continuous aperture.

Aperture ‘25.29 25.68 2639 27.51 29.63
12-Element Array ‘ 25.03 25.07 25.18 2544 2641

The dashed plot of Figure 4-15 illustrates pattern behavior when W-space zeros are
moved off the unit circle. We can fill pattern nulls and generally shape the pattern.
When we place all zeros on the unit circle in the complex plane, it can be proved that
the array excitations will have amplitude symmetry about the centerline. Moving the
zeros off the unit circle disturbs this symmetry. We can eliminate all pattern nulls by
moving all the W-plane zeros off the unit circle. If we start with a uniformly fed array
and move all the zeros to the same radius, the distribution taper across the array will
be linear in decibels. In the next two sections we explore techniques for moving the
zeros systematically to produce shaped patterns from an array.

4-13 FOURIER SERIES SHAPED-BEAM ARRAY SYNTHESIS

The preceding methods seek the narrowest beamwidths for a given sidelobe level.
Arrays can also produce shaped beams. We discussed the Woodward line-source
method for shaped beams in Section 4-8. We obtain good approximations by sam-
pling the line-source distribution with an array. Beyond sampling a line source, we can
apply Fourier series to design an array directly. An array for a shaped beam must be
much larger than is required for the beamwidth. The extra size of the array gives us
the degrees of freedom necessary for beam shaping. Increasing the array size increases
the match between the specified and the actual beam shape.

Because the array pattern is periodic in k-space, we can expand the pattern in a
Fourier series. The array pattern for a symmetrically fed array is given by either

) =1+2 Z 2 cos % N odd (4-59)
or m
f) = ij 1_ s & 1)‘/’ N even (4-60)

where m = (N — 1)/2 (odd) or m = N/2 (even) with ¥ = kd cos + §. Equations (4-
59) and (4-60) are Fourier series expansions of the pattern in -space. The elements
farthest from the centerline produce the highest harmonics in the series.

In an asymmetrically fed array, we express Egs. (4-59) and (4-60) as a sum of
exponential terms:

Z a,e’™V N odd

—m

fan=1" (4-61)

m
Zanej(anl)wﬂ 4 a_ne*j(2ﬂ*1)1///2 N even

n=1
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Suppose that we have a desired pattern in k-space given by f; (). We expand it in
an infinite Fourier series of the same form as Eq. (4-61) with m = co. We equate the
first m coefficients of the two Fourier series to approximate the desired pattern. As in
any Fourier series method, we solve for the coefficients by using the orthogonality of
the expansion functions when integrated over a period:

L[ —jnv
> Ffa(Y)e " dyr N odd
=9 - (4-62)
= Ffa(Y)e ICn=DV/2 gy N even
T J-xn
1 [T ,
an == Fa(yr)ed Fn=Dv72 gy, N even (4-63)
TJx

We determine the array coefficients directly from the Fourier series coefficients.

Example Design a 21-element array with A/2 element spacing with a constant beam
2b wide centered in y-space.
We use Eq. (4-62) to compute coefficients a,,:

b .
a0 = L/ omint dy = sinnb
2n J_p mn

Suppose that the constant beam is 45° at broadside: 67.5° < 6 < 112.5°. Then

360° A
b="""c0s67.5° = 68.88°
A2

We can ignore the constant factor i/t and expand to compute the array coefficients
(Table 4-20).

The method fails to some extent when we try it on arrays with spacings greater than
A/2. The integral does not cover the total visible region. We can, however, use it with

TABLE 4-20 Fourier Series Synthesis Coefficients
of 21-Element Array for Pattern of Figure 4-16

Amplitude Phase

n a, (dB) (deg)
0 1.0000 0.00 0
+1 0.9328 —0.60 0
+2 0.3361 —9.47 0
+3 —0.1495 —16.50 180
+4 —0.2488 —12.08 180
+5 —0.0537 —25.40 180
+6 0.1336 —17.48 0
+7 0.1209 —18.35 0
+8 —0.0240 —32.40 180
+9 —0.1094 —19.22 180

+10 —0.0518 —25.72 180
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spacings less than 1/2 with good results. As we increase the number of elements in
the array, the match to the desired pattern improves. Of course, tapering the desired
pattern reduces the higher harmonics and the subsequent need for more elements.

Example Suppose that we want to scan the beam of the 21-element array with /2
element spacing to 60° with a 45° beamwidth. The beam edges are 37.5° and 82.5°.

We could calculate coefficients by integrating Eq. (4-62) directly with this require-
ment, but we can use §, the progressive phase shift between elements, to simplify the
problem. The beam edges in yr-space are

180° cos(37.5°) +&8 and 180°cos(82.5°) + &
142.8°+ 6 23.49° +§

We pick § to center the beam in v-space: b = 142.8° + 8, —b = 23.49° + §. On solv-
ing, we have § = —83.15° and b = 59.65°. We use the formula sin(nb)/mn to compute
coefficients of the array and then add the progressive phase shift through the array.
Figure 4-16 shows the array pattern.

When we scan the beam to end fire, we must account for the symmetry about
0 = 0°. Because we limit the spacings to less than A/2 to prevent grating lobes, we
have an unspecified region of ir-space that we can choose in any convenient manner.

Example Design a21-element end-fire array with a 90° beamwidth and 0.30A spacings.

20

0 2%

25 /

5 \\\@,Vl/o
§§\\\\ /////é‘

\ "%
24

|
3

160° 80 200°

FIGURE 4-16 Twenty-one-element array designed by the Fourier series method to scan to
60° with a 45° beamwidth.
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For an end-fire array we pick § = —kd = —108°. This places the edge of the visible
region on the yr-space origin. We are free to specify the invisible region that will be
included in the integral [Eq. (4-62)]. We specify the invisible region as the mirror
image of the portion in the visible region and solve for b:

—b = 360°(0.3) cos(45°) — 108° = —31.63°

We use the sin(rnb)/mn formula to calculate array coefficients and then apply the
progressive phase shift § to the coefficients obtained to get the proper phase to scan
to end fire.

We cannot control the sidelobes of an array designed using Fourier series expansion.
The initial specification calls for no sidelobes. Sampling a Woodward linear aperture
with an array also fails to give control of the sidelobes. The Woodward linear distri-
bution cannot control sidelobes; it provides only ease of design. In the next section we
explore a method with direct control of sidelobes of an array.

4-14 ORCHARD METHOD OF ARRAY SYNTHESIS [15]

In Section 4-6 we manipulate the nulls of a continuous linear distribution to control the
sidelobes of the radiated pattern individually. In Section 4-9 we show that the nulls of
the linear aperture pattern can be related directly to the roots of Schelkunoff polynomial
representation of the linear array pattern in W-space. The unit circle method gives us a
tool for array synthesis expanded in the Orchard method for the design of arrays with
arbitrary patterns. We apply an iterative technique on the W-space zeros to produce the
pattern desired. We control all the sidelobes individually and produce shaped patterns
for the main beam. The finite size of the array limits the control of the main beam shape
as we saw in the Fourier series expansion method. Each array element corresponds to
a term in the Fourier series expansion.
We start with the Schelkunoff transformation of the array pattern:

N
FW)y=Co[[W = W) (4-64)
n=1

A normalization constant Cy has been added. We write W,, = exp(a, + jb,). Expansion
of Eq. (4-64) produces the feeding coefficients of an array with N + 1 elements:

W=¢eV  with ¥ =kdcosh+3§

0 is measured from the array axis. The effect of 6 on the unit circle method is to
rotate the starting and finishing points when varying W to calculate the pattern using
Eq. (4-64). An equally valid method is to rotate the zeros about the origin of the
complex plane, which leaves the yr-space pattern shape unchanged. When designing a
shaped beam, we need to rotate the main beam peak to the proper location to calculate
the amplitudes because our specification will be in terms of the pattern angle 6 relative
to the peak.
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Figure 4-11 illustrates that the pattern amplitude is the product of distances from
each zero to the pattern W point. Expansion of Eq. (4-64) in terms of the product of
distances to W gives

N
|FW)I =G5 [ 11 — 2¢* cos(yr — by) + €] (4-65)

n=1

The Orchard method requires the specification of each sidelobe and additional values
located at the minimum ripple points in the shaped region. For a single-beam unshaped
pattern, we only specify sidelobes, and all a,, will be zero since all zeros W,, will be on
the unit circle. We restrict the array to A /2 spaced elements when applying the method
so that the entire unit circle is used in the pattern. An array with N zeros has N pattern
peaks which lie between the zeros in the W-plane. When we include the normalization
constant Cy to specify the main beam peak and all the zeros, we have N 4 1 unknowns
to find. Without loss of generality we specify the last zero as Wy = —1 or ¢ = 7 to
reduce the number of unknowns to N. Since we rotate the zeros after we determine the
proper zero spacing for specified sidelobes, we place the main beam between Wy_,
and Wy = —1. Before starting the iteration technique, we generate a list of sidelobe
levels with the main beam as the last one.

The method expands the pattern in a multiple-variable Taylor series using b,, a,, and
the normalization constant as variables. To facilitate calculating the partial derivatives,
we express Eq. (4-65) in decibels:

= 10 a 2a
G = XZ]: 200) In[1 — 2¢% cos(y — b,) + €*] + 101og,,[2(1 + cos )] + C

(4-66)
The second term of Eq. (4-66) is due to the zero Wy = —1 and C is the normalization
constant of the main beam. The logarithm to the base 10 has been expressed as a

natural logarithm for the calculation of derivatives:

G Me“[e™ — cos(y — by)]

= 4-67
da, 1—2e%cos(y —b,) + e ( )
G M e si —b,

_ e sin(yr ) (4-68)
ab, 1 — 2e% cos(yy — by,) + e2an
G
7 4-69
5C (4-69)

The variable M = 20/In(10). The multiple-variable Taylor series involves three types
of terms:

N-1 G
G(bm Ay, C) = GO(bn07 ano, CO) + Z %(bn - bnO)
n=1 n

N-1

G
+> 7 (@n = a0) + (€ = C) (4-70)

n=1
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Every nonzero value of a, fills in the pattern null at ¢ = b,. If we specify the desired
pattern amplitude at every sidelobe peak, the main beam, and at points between the
sidelobe peaks equal to the number of nonzero a,, we form a square matrix equation.
The solution gives the changes in b, a,, and C. Since we expanded Eq. (4-66) as a
linear approximation, the solution of Eq. (4-70) gives only an approximate solution.
In a few iterations the method converges and we obtain an acceptable pattern.

Suppose that the shaped pattern is limited to a range in W-space so that there are
only L nonzero a,. Given the desired pattern S, (1,,) at ¥, and the current pattern
Go(Yn), one row of the matrix is

R N g oo

[3G(Wm) 3G (WYm) 3G (Ym) 3G (Ym) 1}

3b1 8bN,1 8a1 ’ E)aL

We need N + L rows or pattern points to solve Eq. (4-70) for changes in b,, a,, and
C:
[8by,...,8by,8ay, ..., 8a.,8C]"

We require a search routine to locate the pattern peaks between the pattern nulls or
minima between peaks in the shaped region for given values of b, and a, after we
normalize to the current pattern peak. We subtract these from the levels desired:

[SW1) — Go(W), - SWn+1) — Go(Ynr)]"

After solving the square matrix equation, we update the W-plane zeros:

by = by + by
by_1 =by_1+8by_;
a; = ay +da

ap = aj, —|—8aL

C=Cy+éC

The iteration alters the beam peak and its location. The pattern peak is normalized
after iteration, and for a shaped pattern a new zero rotation is found to line up the
beam peak for the pattern-shaping function.

Example Design an eight-element array with its beam peak at 90° and specified
sidelobes before the peak of 25, 30, and 25dB and 20, 25, and 30dB after the peak.
The sidelobes values begin with the first sidelobe after the peak and rotate to the
peak:
-20 —-25 -30 —25 —30 —-25 0
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FIGURE 4-17 Eight-element array designed using Orchard synthesis for individually specified
sidelobes, A/2 spacings.

The solution converges in four iterations after starting with uniformly spaced zeros on
the unit circle. Figure 4-17 shows the unit-circle zeros on the left and the corresponding
pattern on the right with A /2 element spacing:

W-Space
Zero (deg) | 178.14 142.72 99.26 58.01 —62.18 —-96.89 —130.37

Pattern
Null (deg) 8.25 37.54 5653 7120 11021 122.57 136.41

The feeding coefficients for the final design are given in Table 4-21.

Although the Orchard method requires the elements to be spaced A/2 during syn-
thesis, the completed design can be used at another element spacing. Figure 4-18 gives
the unit-circle diagram of the same array with a 0.7\ element spacing. The range of
W now exceeds 27 and the sidelobe regions of the unit circle have been used more
than once. Sidelobes 3 and 4 occur twice in the pattern. Of course, if we scan the
array too far, the pattern would have grating lobes. Figure 4-19 plots the pattern of
an end-fire array with A /4-element spacing using the same zeros. Only a portion of
the unit circle is used, and not all sidelobes are realized. Figure 4-20 illustrates the
end-fire case with the elements spaced so that the final position of W occurs at a
null. The pattern contains all six sidelobes. The unit-circle analysis mirrors that of

TABLE 4-21 Coefficients of Eight-Element Array of Figure 4-17 Designed by Orchard
Synthesis

Magnitude Phase Element Magnitude Phase
Element (dB) (deg) (dB) (deg)
1 —8.69 8.70 5 0 3.79
2 —3.90 322 6 —1.06 741
3 —1.06 1.29 7 -3.90 5.48
4 0 491 8 —8.69 0
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FIGURE 4-18 Eight-element array designed using Orchard synthesis for individually specified
sidelobes, 0.7A spacings.

~
N

-

FIGURE 4-19 Eight-element array designed using Orchard synthesis for individually specified
sidelobes, A/4 spacings scanned to end fire.

i

FIGURE 4-20 Eight-element array designed using Orchard synthesis for individually specified
sidelobes, 0.42A spacings scanned to end fire.
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the circle diagram in Chapter 3, where increasing the element spacing increases the
visible region. In this case the visible region corresponds to rotation about the unit
circle. Expansion of Eq. (4-64) produces the array feeding coefficients independent
of element spacing, and the progressive phase shift between elements § affects phase
but not amplitude. The four examples given in Figures 4-17 to 4-20 have the same
sequence of feed magnitudes.

We can use Orchard synthesis to generate a difference pattern similar to the Bayliss
line distribution and control all the sidelobes. A difference pattern has two main beams.
Using the same example of an eight-element array, we modify the sidelobe list to
include side-by-side main beams. We eliminate the —25-dB lobe next to the original
main beam from the values above:

—-20 —-25 —30 —-25 —30 0 0

When we apply the synthesis by placing the last main beam at 90°, we obtain a pattern
with two main beams with the null between them at 101.6°, corresponding to a W-
plane null at —36.3°. We rotate all W-plane zeros by 36.3° to place the null between
the two main beams at 90°. Figure 4-21 shows the W-plane and polar pattern for the
final design. Note the placement of the W-plane zero at W = +1. Table 4-22 lists the
feeding coefficients.

FIGURE 4-21 Difference pattern array using eight-elements designed by Orchard synthesis.

TABLE 4-22 Coefficients of Eight-Element Difference Pattern Array of Figure 4-21
Designed by Orchard Synthesis

Magnitude Phase Magnitude Phase

Element (dB) (deg) Element (dB) (deg)
—6.32 5.39 5 —6.91 178.35

—0.35 1.28 0.0 184.6

B W =

6
0.0 0.8 7 —0.35 184.12
—6.91 7.05 8 —6.32 180
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We fill in the null between the different lobes to form a flat-topped beam for
the eight-element array and use a constant-amplitude shaping function for the pat-
tern desired. The beamwidth of the flat lobe is determined by the lobe spacing, and
only certain sizes are possible. Remember that an array is a Fourier series approx-
imation to the pattern desired. With only eight elements the match is poor between
the pattern desired and the approximate pattern. We use one nonzero a, to move the
W-plane zero off the unit circle that forms the pattern null between the two beams and
add another pattern specification:

—-20 —25 —30 —-25 —30 0 0 -1

The last number gives the pattern level at the null relative to the shaped pattern level.
This last term uses Eq. (4-67) for its columns. The constant beam design uses a 22°-
wide beam centered at 90° for the pattern shape function. We start with a, = 0.01
before iterating. The iteration using the matrix equation computes a; = 0.4435, which
can be either positive or negative without changing the pattern. Rotation of the W-plane
zeros placed the zero for minimum ripple along the positive real axis and produced a
symmetrical pattern about = 90°. Figure 4-22 contains the final design W-space zeros
and polar pattern. The iterations produced the sidelobe levels specified (Table 4-23).

FIGURE 4-22 Flat-topped beam eight-element array designed by Orchard synthesis.

TABLE 4-23 W -Plane Zeros of Eight-Element
Flat-Topped Beam of Figure 4-22 Designed by
Orchard Synthesis

W-Space W-Space Pattern
Zero (deg) Radius Null (deg)
165.51 1.0 23.15
123.99 1.0 46.46

84.33 1.0 62.06

0 0.6418 90
—91.65 1.0 120.61
—115.39 1.0 129.87

—161.18 1.0 153.57
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TABLE 4-24 Coefficients of Eight-Element Array for Flat-Topped Beam of Figure 4-22
Designed by Orchard Synthesis

Magnitude Phase Magnitude Phase
Element (dB) (deg) Element (dB) (deg)
1 —12.95 —174.39 5 —1.15 1.54
2 —10.78 178.85 6 0.0 4.37
3 —24.69 167.92 7 —2.26 3.95
4 —7.90 —1.47 8 —9.10 0.0

The radius of the fourth term could be 1/0.6418 = 1.5581 without affecting the pattern
result. Inserting the zeros into Eq. (4-64) and expanding the polynomial produces the
feeding coefficients (Table 4-24).

The Fourier series example for a constant beam centered at 60° with a 45° beamwidth
using 21 elements spaced A/2 (Figure 4-16) was repeated using Orchard synthesis.
Fourier series synthesis could not control the sidelobes. First, we need to figure out
how many array lobes cover the shaped pattern region. Place the zeros uniformly
around the unit circle in the W-plane and determine how many of the roots are within
the beam. For a 21-element array six beams and five zeros lie in the ¢ = mcos6
angular region of the constant beam found using Eq. (4-71):

N (cOS Omin — €OS Bmax)
2

beams = “4-71)

The solution to Eq. (4-71) is an integer given N as the number of W-plane zeros. All
sidelobes were set at —30dB and the ripple at —0.9 dB below the constant beam:
Lobes | 1-14 15-20 21-25
Sidelobe (dB) | =30 0.0 —09

Figure 4-23 gives the final result of the synthesis, an improvement over Figure 4-16,
with its uncontrolled sidelobes.

FIGURE 4-23 Twenty-one-clement array designed by Orchard synthesis to scan to 60° with
a 45° beamwidth.
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We must consider the element excitations. The zeros not lying on the unit circle
can be either inside or outside the circle and produce the same pattern. Different
combinations of zero locations lead to different element amplitudes. The last example
has five zeros displaced from the unit circle, which produces 2°> = 32 combinations. We
need to check the amplitude distribution that results from each case (Table 4-25). Arrays
with a large range of amplitudes are difficult to produce. In some cases the range of
amplitude available is limited, such as waveguide slot arrays. Mutual coupling between
elements also makes it difficult to achieve the desired low amplitudes on some elements
because nearby elements will excite them, and compensation for mutual coupling may
prove difficult. Figure 4-23 shows one of the combinations of root placements that
produced the minimum amplitude variation in the array.

The Fourier series synthesis gave an amplitude variation of 32.4dB, whereas the
Orchard synthesis variation is 13.29dB. This synthesis produced better patterns with
less amplitude variation. Decreasing the ripple depth increases the amplitude variation
of the array.

Csc?6 cos @ Pattern This pattern produces constant round-trip signals versus the ele-
vation angle for radar. The pattern from the array axis is given by csc?(# — 90°) cos(f —
90°). The peak occurs beyond 90° and decreases for greater angles. The shaped pattern
function requires the rotation of the W-plane zeros at each step so that the pattern peak
calculated from the zeros occurs at the proper angle. The changing zero locations move
the beam peak location at each iteration.

Example Design a 16-element csc?(6 — 90°) cos(6 — 90°) beam array to operate from
100 to 140° and have 30-dB sidelobes.

Equation (4-71) determines that five beams cover the pattern region and sets the
number of nonzero a, as 4. The 16-element array has 15 zeros, with the first 10
specified as —30dB, five for the shaped-beam region, and four for the minima between
the shaped-beam peaks. We specify the shaped-beam lobes relative to the shape levels.
The last lobe is the beam peak.

TABLE 4-25 Coefficients of 21-Element Array for Flat-Topped Beam of Figure 4-23
Designed by Orchard Synthesis

Amplitude Phase Amplitude Phase

Element (dB) (deg) Element (dB) (deg)
1 —11.85 —65.47 12 —3.48 —115.31
2 —6.89 —146.85 13 -3.01 —158.73
3 —6.23 126.55 14 —-2.97 134.01
4 —11.34 4.64 15 —4.93 49.59
5 —5.12 —158.19 16 —7.51 —40.53
6 0.0 108.08 17 -9.64 —111.80
7 —0.01 23.97 18 —9.44 —159.41
8 —6.33 —65.70 19 —8.06 142.99
9 -9.73 86.93 20 -9.26 73.66
10 —-2.09 —4.11 21 —13.29 0.0

11 —1.75 —70.12
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Lobe ‘11 12 13 14 15 16 17 18 19
Amplitude (dB) ‘ 10 08 06 04 02 —-09 -0.7 —-05 —-0.2

Allowing the ripple to increase in the lower levels of the shaped pattern region
decreases the range of element amplitudes. The method converged in 11 iterations to
the design given in Figure 4-24. All 2* = 16 combinations of a, placements inside
and outside the unit circle were checked (Table 4-26). The amplitude variation ranged
from 11.47 to 25.47 dB.

Figure 4-25 illustrates the design repeated with eight elements (Table 4-27). Although
the sidelobes could be controlled at —30 dB, the shaped pattern region shows less pattern
control than with 16 elements.

Extensions to the Orchard method make various improvements. By adding balancing
zeros inside and outside the unit circle in the W-plane, the feeding coefficients of the
array can be made real with only O or 180° phases [16]. This adds elements to the
array and changes the shape of the beam somewhat. The coefficients are real only if
the pattern is symmetrical about & = 90°. To implement the method you add a term

FIGURE 4-24 Sixteen-element array with csc 26 cos 6 pattern designed by Orchard synthesis.

TABLE 4-26 Coefficients of 16-Element Array for csc’0 cosf Beam of Figure 4-24
Designed by Orchard Synthesis

Magnitude Phase Magnitude Phase
Element (dB) (deg) Element (dB) (deg)
1 —11.47 —149.27 9 —1.19 149.09
2 —9.84 —100.16 10 —2.71 —177.54
3 —8.07 —69.72 11 —3.53 —131.64
4 —4.79 —40.25 12 —7.82 —52.50
5 —2.65 —0.56 13 —9.46 100.34
6 —2.04 34.20 14 —4.30 —157.29
7 —0.82 65.82 15 —4.55 —76.99
8 0.0 107.07 16 —8.72 0.0
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FIGURE 4-25 Eight-element array with csc 2 cos 6 pattern designed by Orchard synthesis.

TABLE 4-27 Coefficients of Eight-Element Array for csc?6 cos Beam of Figure 4-24
Designed by Orchard Synthesis

Magnitude Phase Magnitude Phase
Element (dB) (deg) Element (dB) (deg)
1 —11.62 130.02 5 0.0 —122.98
2 —8.61 —170.78 6 —-2.05 —179.05
3 —12.62 179.21 7 —5.73 —44.44
4 —2.61 —173.92 8 —11.54 0.00

to Egs. (4-67) and (4-68) for the extra elements located off the unit circle. A design
of a flat-topped beam centered at 90° using the balanced zeros produced a design
with more than 30dB of variation between the elements similar to a Fourier series
expansion that had about the same range of amplitudes. The range of amplitudes in the
array can be reduced by placing all the zeros off the unit circle [17, p. 124]. We give
up the nulls between the lobes and must now search a large set of possible solutions to
select a design with the least amplitude variation. A genetic algorithm sorts through the
large set of zero combinations inside/outside all that satisfy the pattern requirements
to discover the best design.

4-15 SERIES-FED ARRAY AND TRAVELING-WAVE FEED SYNTHESIS

A series-fed array uses couplers along a line that distribute power to the elements
from a single transmission line. A single wave travels along the line with each element
removing a portion of the power. A matched load absorbs the remaining power at
the end to prevent the reflection of a wave traveling toward the source end. A second
backward traveling wave would produce another beam with reduced amplitude indistin-
guishable from a sidelobe. The coupling could be a physical coupler or it could be just
a series or shunt load across the transmission line. Waveguide slots are an example of
loads on a transmission line. An array using couplers can have phase shifters between
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the couplers and the elements to form a phased array. A second configuration for a
phased array places phase shifters in the transmission line between the couplers. This
case uses the simple control of identical phase shifters set to the same value to scan the
beam. The phase shifters are the progressive phase § along the array used for scanning.

The array distribution is given by the sequence of radiated powers, P;. The traveling
wave or nonresonant array dissipates a ratio of the input power R in the load:

N
Y P =P,(1-R)
i=1

N
We normalize the distribution to the sum of radiated power: Py = Z 1 P;. The ele-

=
ment power becomes P;(1 — R)/ P, and we use the normalized power distribution to
calculate coupling values:

Ci =P remaining power = 1 — P,

The coupling to the second element removes power from the remaining power:

1-P

) remaining power =1 — P — P,

The general expression is
p;
Ci=——7
1-> i bi
If the element electrical model consists of a shunt conductance on a transmission
line, such as waveguide slots, the power radiated by each slot = |Vi,.|?g; and the
normalized g; = C;. Similarly, an electrical model of an element as a series resistance
on a transmission line can be solved in a similar manner. Power radiated = | i |?r;
and the normalized r; = C;.
Some array feeders have significant losses between the elements and we must
account for these losses when designing the couplers. Suppose that the feeder has iden-

tical losses L = 1 — 10-atenuation/10 hegween couplers. The power balance equation
becomes

4-72)

N N
Po _ RPo (N =DL/RPy > P L ijz(] ~1)P;
total load losses to load antennas losses to antennas

N N
_ Ly ijz(] — P +Zi=] Pi
B 1—-R—(N—-1LR

in

As before, we must normalize the power at each element to the input power P;/ P;,. The
coupling to the first element is C; = P and the power left is 1 — P;. The transmission
medium attenuates the signal between the first and second elements and we compute
the power at the second element = (1 — P;)(1 — L ). We determine the coupling value
from the ratio

P,

C, =
(I—=P)A—Ly)
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and the element removes P, power. The remaining power travels to the next element
but is attenuated by (1 — L ;). The power removed, P,, is subtracted from the power at
that point and the remaining power is attenuated before reaching the next extraction:

j— P3
(=P —Ls) = PyJ(1 = Ly)

— P4
C{[A=P)A = Ls) = PJ(1 = Ly) = P3}(1 = Ly)

The total loss due to attenuation is found from the sum of the normalized powers:

N
loss(dB) = 10log (Z Pi)
i=1

Continuous Traveling Wave As the wave propagates along the antenna, it loses power
continuously. The slots or holes must radiate more and more of the remaining power if
the distribution is to be uniform. In general, the holes or slots must load the waveguide
increasingly as the wave travels to the termination. The power at any point in the guide
is

C;

etc.

Cy

P(z) = Pyexp [—Z/Z a(z2) dz:| (4-73)
0

where P is the power at z = 0 and «/(z) is the attenuation distribution (nepers/length).
Suppose that we have a desired amplitude distribution, A(z) (voltage):

L L
Py = / |A(z)[*dz + / p1(2) dz + Pioad (4-74)
0 0

where Py, is the power lost in the termination, |A(z)|? the radiated power distribution,
and p; (z) the ohmic loss in the walls. Let the power into the termination be a ratio of
the input power P, = R Py; then
1 L )
Py = TR [1A@)° + pL(z)] dz 4-75)
- 0

The power anywhere along the leaky wave antenna is

L
mo=m—/|mm%umo& (4-76)
0

We differentiate this to get

dP(z)
dz

= —[|A@* + p(2)] (4-77)

We differentiate Eq. (4-73) to relate a(z) to P(z):

1 dP(x) ]
o & = 2a(z) (4-78)
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We substitute Eq. (4-75) into Eq. (4-76) for P,. By combining Egs. (4-76) and
(4-77) into Eq. (4-78), we derive the required attenuation distribution [18, p. 153]:

31A@)I1?

L z
[1/(1 —R)]/O |A(z>|2+pL(z>dz—/0 A + pL(z)dz

az) = 4-79)

If we assume a lossless transmission line, p; (z) = 0 and Eq. (4-79) simplifies.

Example Design the attenuation distribution for a uniform distribution along a loss-
less transmission-line leaky wave antenna.
Substitute A(z) = 1 and p;(z) = 0 into Eq. (4-79) and perform the integrations:

% -
[L/A—R1—z L[1—z(1-R)/L]
Given R = 0.05 (5% of the power into the load) for a structure with length 10x. The
initial and final attenuation constants are

0.95
0 (0) = =~ =0.0475 Np/i or 0.413dB/2

a(z) =

0.95
(L) = —=0. A .25dB/x
ar(L) 5L R 0.95 Np/A or 8.25dB/
We reduce the variation between the initial and final values by dissipating more power

in the termination. Given R = 0.1,

@;(0) = 0.045 Np/A or 0.39dB/x
/(L) =045 Np/A or 3.9dB/A

If we take the ratio of the attenuations at the ends, we have a(L)/a(0) = 1/R.

We can normalize Eq. (4-79) to the interval +2 and use the linear distributions
given above where x = z/L and p; (z) = 0. Figure 4-26 shows the attenuation distri-
bution for a Taylor distribution with 30-dB sidelobes and n = 8 for various levels of
power dissipation in the load. Table 4-28 lists the bounds on «(x)L for various Taylor
distributions. Changing the number of modified zeros has only a minor effect on the
bounds. A cos® on a pedestal distribution with a 30-dB sidelobe level has very similar
bounds on the attenuation. The 40-dB sidelobe level design requires a greater variation
of attenuation than the 30-dB cases. Long structures may not be able to provide the
low levels of radiation above the ohmic losses for an effective design. In all cases
we decrease the attenuation range on an antenna by decreasing the antenna efficiency
though absorbing more power in the termination.

4-16 CIRCULAR APERTURES

Many common apertures conform to circles. The two-dimensional Fourier transform
relation for the pattern holds for any aperture rim shape and becomes for the circle

21 a
f(@, ¢) — / / E(r’, ¢/)ejkr’sin0008(¢*¢/)r/ dr' d¢/ (4-80)
0 0
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FIGURE 4-26 Leaky wave attenuation distribution for Taylor distribution with 30-dB side-

lobes, n = 8.
TABLE 4-28 Maximum and Minimum Normalized Attenuation «(z)L of a Leaky Wave
Taylor Distribution
30dB
. n==6 n=12 40dB,n =38
Termination
Power (%) Maximum  Minimum  Maximum  Minimum  Maximum  Minimum
5 27.08 0.59 26.04 0.63 31.61 0.12
6 25.38 0.58 24.54 0.63 29.63 0.12
8 22.70 0.57 22.06 0.61 26.52 0.12
10 20.66 0.56 20.08 0.60 24.12 0.11
12 19.00 0.55 18.46 0.59 22.18 0.11
15 17.00 0.53 16.52 0.57 19.81 0.11
20 14.42 0.50 14.04 0.53 16.78 0.10
25 12.42 0.46 12.09 0.50 14.44 0.10
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where a is the radius, 7’ the radial coordinate, and ¢’ the angle coordinate of the
aperture point. The integral leads to a k,-space.

When the distribution has circular symmetry, the ¢’ integral can be evaluated easily,
which reduces Eq. (4-80) to

flk) =2x / ’ E()Jo(kr' sin0)r' dr’ (4-81)
0

where Jy(x) is the zeroth-order Bessel function of the first kind. All great-circle patterns
(constant ¢) are identical. For a uniform distribution,

2Jy(ka sin 0)
kasin 6

f(kr) =

plotted in Figure 4-27. The zeros occur at the zeros of J;(x). The 3-dB pattern point
of the uniform distribution is

A
kasin6; = 1.6162 sinf; = 0.51455

4-82
0.5145x ¢ )

HPBW = 2sin~!

vd AN

>

Pattern level, dB
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o
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ka (sin 6 — sin)

FIGURE 4-27 k,-space pattern of uniform circular aperture distribution.
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where D is the diameter. For large apertures we can approximate sin6 by 6 (rad).
Converted to degrees, the half-power beamwidth becomes

A
HPBW = 58.95°5 (4-83)

Example Compute the beamwidth of a uniform distribution circular aperture with
10.5A diameter.
The beamwidths are found from Egs. (4-82) and (4-83):

0.5145
HPBW = 2sin"! ——— =5.62°
10.5
58.95° .
HPBW = —— =561

10.5

The first zero of J;(x) gives the k-space pattern null point.

ka sin Gnuu = 3.8317

, 1.2197 (4-84)

Bwnun = 2sin

o A
~ 139.76 —
D

We can also define a null beamwidth factor and relate the beams of other distri-
butions to the uniform circular distribution beamwidth [Eq. (4-84)]. All other circular
distributions relate to Eq. (4-82) or (4-83) through a beamwidth factor. The uniform
distribution has a unity beamwidth factor.

4-17 CIRCULAR GAUSSIAN DISTRIBUTION [19]
A truncated Gaussian distribution has a simple functional relation:
Ery=e""  |r|<1 (4-85)
We can easily calculate the edge taper through the conversion between logarithms:
edge taper(dB) = 8.686p (4-86)

We determine amplitude taper efficiency by substituting Eq. (4-85) into Eq. (4-8) and
carrying out the integrations:

2(1 — eP)?
ATL = ﬁ (4-87)

Table 4-29 lists designs for various sidelobe levels in terms of the single parameter:
edge taper. Equation (4-86) relates the parameter p to the edge taper.

Example Estimate the beamwidth of the pattern radiated from a circular distribution
with a 13-dB edge taper and radius of three wavelengths.
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TABLE 4-29 Circular-Aperture Gaussian Distribution, err’ (Irl <1

Sidelobe Edge Beamwidth
Level (dB) Taper (dB) ATL (dB) Factor
20 4.30 0.09 1.0466
22 7.18 0.24 1.0800
24 9.60 0.41 1.1109
25 10.67 0.50 1.1147
26 11.67 0.59 1.1385
28 13.42 0.76 1.1626
30 14.93 0.92 1.1839
32 16.23 1.06 1.2028
34 17.32 1.18 1.2188
35 17.81 1.23 1.2263
36 18.75 1.34 1.2405
38 21.43 1.65 1.2820
40 24.42 2.00 1.3296

We use linear interpolation in Table 4-29 to determine the beamwidth factor. From
Eq. (4-82),
_; 1.1568(0.5145)

6

HPBW = 2sin =11.38°

From Eq. (4-83),
1.1
HPBW = 58.95° (%) —11.36°

The amplitude taper efficiency is calculated from Eq. (4-87):

= 13 = 1.497
P= 3686
2(1 _ 6_1'497)2
ATL = =0.847 (-0.72dB)

1.497(1 — e~29%3)

We obtain the same value by interpolating in Table 4-29.

Sidelobes below 40 dB are difficult to obtain with this distribution. The inner side-
lobes continue to decrease with a decreasing edge level, but the outer lobes fail to
reduce and dominate over the first few sidelobes. Table 4-29 results from a search
because no direct method exists for computing the edge taper for a specified side-
lobe level.

4-18 HANSEN SINGLE-PARAMETER CIRCULAR DISTRIBUTION [20, 21]

This distribution leads directly from sidelobe level to a single parameter H that relates
through closed-form expressions to all other distribution parameters. The pattern of
a uniform distribution is modified close in to the main beam. By using the U-space
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variable of Taylor, we have U = (2a/A)sinf, where a is the radius. The pattern has
different expressions in two regions:

21 (nV/H? = U?)
nvH? — U?
2J1(n/U% = H?)
wWU? — H?

Ul <H (4-88a)
f) =

Ul > H (4-88b)

I, (x) is the first-order modified Bessel function of the first kind.
The high function value of Eq. (4-88a) at the boresight reduces the sidelobes of the
uniform distribution [Eq. (4-88b)], 17.57 dB, below the level at U = H. The sidelobe

level is
21 (nH)
SLR = 17.57 4+ 20 log g (4-89)
ol

Given the sidelobe level [positive (dB)], we use Eq. (4-89) in an iteration scheme to
determine H.
The aperture distribution is given by

E(r) = Ip(nHY1 =72  |r] <1 (4-90)

where Iy is the zeroth-order modified Bessel function of the first kind. Equation (4-8)
can be integrated for this circularly symmetrical distribution [Eq. (4-90)] to derive the
amplitude taper efficiency:

ATL = A7 CeH) (4-91)
- WH2[I3(nH) — I2(nH)]

Table 4-30 lists the parameters of the Hansen distribution for various sidelobe levels.
At the top, Tables 4-29 and 4-30 are very similar. Any sidelobe level can be achieved
with this distribution, subject to tolerance problems generated by any low-sidelobe
design. The distribution is not optimum, but it is convenient.

4-19 TAYLOR CIRCULAR-APERTURE DISTRIBUTION [22]

Similar to the line source, the Taylor circular-aperture distribution modifies inner zeros
of the uniform amplitude and phase circular-aperture k-space pattern to approximate
the Dolph—Chebyshev distribution. By use of the variable tU = ka sin6 the uniform
distribution pattern is found to be J;(nU)/mnU. We remove n — 1 inner zeros and add
those of the Dolph—Chebyshev distribution:

ne [T, a-u*/u})

f) = =
U l_[N:l(l —U?%/S%)

(4-92)
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TABLE 4-30 Hansen Single-Parameter Circular-Aperture Distribution

Sidelobe Edge Beamwidth
Level (dB) H Taper (dB) ATL (dB) Factor
20 0.48717 4.49 0.09 1.0484
22 0.66971 7.79 0.27 1.0865
24 0.82091 10.87 0.48 1.1231
25 0.88989 12.35 0.60 1.1409
26 0.95573 13.79 0.72 1.1584
28 1.08027 16.59 0.96 1.1924
30 1.19770 19.29 1.19 1.2252
32 1.30988 21.93 1.42 1.2570
34 1.41802 24.51 1.64 1.2876
35 1.47084 25.78 1.75 1.3026
36 1.52295 27.04 1.85 1.3174
38 1.62525 29.53 2.05 1.3462
40 1.72536 31.98 2.24 1.3742
45 1.96809 38.00 2.68 1.4410
50 2.20262 43.89 3.08 1.5039

Given a zero of Ji(x), Ji(x;y) =0, let x;y = nSy. By retaining approximately the
same number of zeros in the visible region as in the uniform distribution, we avoid
superdirectivity. The new zeros Uy are modified zeros of the uniform distribution:

VA2 + (N = 5)?
JAZ+ @ —1)?

where A relates to the maximum sidelobe level, cosh tA = b and 201log b = sidelobe
level(dB). Equation (4-93) is the same as Eq. (4-20) except for the scaling constant
S5, the nth zero of Jj(x) divided by .

Equation (4-92) gives the U-space pattern of the new distribution. We expand the
aperture distribution in a Fourier—Bessel series:

Uy =S¢ (4-93)

n—1
E(r)=_ BuJo(nSyr) r=1 (4-94)

m=0
We compute coefficients B,, by transforming the Fourier—Bessel series [Eq. (4-94)]

into U-space and comparing the far-field pattern with Eq. (4-92). As indicated in
Eq. (4-94), the series contains only 7 nonzero terms:

By=1
n—1
-I1,_,a-s./u% _ (4-95)

B, = — m=1,2,...,n—
Jo(7tS,) HN:],N L= S2/S%)
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Example
lobes and 77 = 6.

ARRAY SYNTHESIS

We use Eq. (4-21) to calculate the constant A:

b = 1020 = 31.6228
cosh™!p
= =132
T

We substitute this value into Eq. (4-93) to compute the five nulls:

No. ‘ 1

2 3 4

5

Null Uy ‘ 1.5582 22057 3.1208 4.1293 5.1769

The first null of the uniform distribution occurs at

X111 = 3.83171

s, =20 — 12197
T

Design a Taylor circular-aperture distribution with 30 dB maximum side-

We use this with the location of the first zero to determine the null beamwidth factor:

U
S,

Bwnull =

1.5582
1.2197

= 1.2775

The coefficients of the Fourier series [Eq. (4-95)] are given in Table 4-31. Figure 4-28

contains the k-space pattern.
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FIGURE 4-28 Taylor and Bayliss circular aperture distributions to give 30-dB sidelobes

(n =06).
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Tables 4-32 to 4-34 list the characteristics for a few designs of the circular Taylor
distribution. Table 4-32 shows that for each sidelobe level there is an optimum 7. As
the sidelobes are lowered, the optimum value of 7 increases. The blanks are unsuitable
designs. The beamwidth factor (Table 4-33) and the null beamwidth factor (Table 4-34)
continue to decrease as 7 increases at a given sidelobe level. In all three tables the
values depend primarily on the sidelobe level.

TABLE 4-31 Fourier—Bessel Series Coefficients for
Taylor Distribution: 30dB, 7 = 6

No. B, B, Normalized Function
0 1.0000 0.53405 1

1 0.93326 0.49841 Jo(x117)
2 0.038467 0.01808 Jo(x127)
3 —0.16048 —0.08570 Jo(x137)
4 0.16917 0.09035 Jo(x147)
5 —0.10331 —0.05517 Jo(x1s57)

TABLE 4-32 Amplitude Taper Losses of Taylor
Circular-Aperture Distribution (dB)

Sidelobe Level (dB)

25 30 35 40 45 50

S|

0.30 0.71 1.14 1.51 1.84

0.28 0.59 1.03 1.48 1.88 223
0.43 0.54 0.94 1.40 1.82 221
12 1.03 0.62 0.86 1.28 1.71 2.12
16 1.85 0.86 0.87 1.22 1.64 2.05
20 1.20 0.94 1.20 1.60 2.01

o N A~

TABLE 4-33 Beamwidth Factor of Taylor
Circular-Aperture Distribution

Sidelobe Level (dB)

25 30 35 40 45 50

S|

1.0825 1.1515 1.2115 1.2638 1.3095

1.0504 1.1267 1.1957 1.2581 1.3149 1.3666
1.0295 1.1079 1.1796 1.2457 1.3067 1.3632
12 1.0057 1.0847 1.1580 1.2262 1.2899 1.3499
16 09927 1.0717 1.1451 1.2137 1.2782 1.3391
20 1.0634 1.1367 1.2054 1.2701 1.3314

o AN &~
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TABLE 4-34 Null Beamwidth Factor of Taylor
Circular-Aperture Distribution

Sidelobe Level (dB)

25 30 35 40 45 50

S|

1.1733 13121 1.4462 1.5744 1.6960

1.1318 1.2775 1.4224 1.5654 1.7056 1.8426
8 1.1066 1.2530 1.4001 1.5470 1.6928 1.8370

12 1.0789 1.2244 13716 1.5197 1.6680 1.8162

16 1.0643 1.2087 1.3552 1.5029 1.6514 1.8003

20 1.1989 1.3442 1.4920 1.6402 1.7890

N &~

4-20 BAYLISS CIRCULAR-APERTURE DISTRIBUTION [8]

We can also design a Bayliss distribution (difference pattern) for circular apertures.
This gives us the pattern necessary for monopulse tracking along one axis. The U-
space pattern has modified zeros to produce nearly equal sidelobes close in to the main
lobes:

-l 2,172
[T, a-v*ud

fWU,¢) =cospnUJ|(nU) =
[T, -U/ud

(4-96)

where Uy are the new zeros and muy are zeros of J{(mU). Bayliss lists those zeros
un (Table 4-35). The inner zeros have been removed and replaced by new ones,
Uy. We compute the zeros in a manner similar to that used for a linear distribution

(Section 4-7):
2
iy 5—N_2 N=1234
A2+ 7

Uy = (4-97)
B A% 4+ N?
Wl A e

The four inner zeros had to be adjusted to achieve the desired sidelobe level. Bayliss
found these through a computer search. The values for £y and A can be found through
the polynomial approximations [Eq. (4-40)].

TABLE 4-35 Bessel Function Zeros, J| (tpy)

N WN N N N WN N N

0 0.5860670 5 5.7345205 10 10.7417435 15 15.7443679
1 1.6970509 6 6.7368281 11 11.7424475 16 16.7447044
2 2.7171939 7 7.7385356 12 12.7430408 17 17.7450030
3 3.7261370 8 8.7398505 13 13.7435477 18 18.7452697
4 4.7312271 9 9.7408945 14 14.7439856 19 19.7455093
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Like the Taylor circular aperture distribution, the aperture distribution is expanded
in a finite-length Fourier—Bessel series:

n—1

E(r.¢) =cos¢’' Y BuJi(mpnr) r<1 (4-98)

m=0

where the coefficients are found by transforming Eq. (4-98) and comparing it with a
U-space pattern [Eq. (4-96)]. The coefficients are given by

n—1 2 2
L 1_‘[N=]<1—um/UN>
JI (T Lm) 1—["*1

N=0,N#m

(4-99)

(1= w3 /1)

Example Design a Bayliss circular-aperture distribution with 30-dB sidelobes and
n=06.
We start with Eq. (4-40) to compute coefficients A and &y:

A =1.64126 & =2.07086 & =12.62754 &3 =3.43144 &4 = 4.32758

We substitute these constants into Eq. (4-97) along with the zeros from Table 4-35 to
calculate the modified zeros:

N ‘ 1 2 3 4 5
Uy ‘ 2.2428 2.8457 3.7163 4.6868 5.6994

We use the zeros in Eq. (4-96) to calculate the pattern. The U-space pattern peak can
be found by using Eq. (4-41):

Unax = 0.7988 ka Sin Omax = TUmax = 2.5096
where a is the aperture radius. The coefficients of the Fourier—Bessel series are found
from Eq. (4-99) (Table 4-36). The normalized coefficients give an aperture distribution

peak of 1. The 3-dB pattern points can be found by searching the pattern:

kasinf; = 1.3138 kasin 6, = 4.2384

TABLE 4-36 Fourier—Bessel Series Coefficients for
Bayliss Distribution: 30dB, 7 = 6

No. B, B,, Normalized Function
0 0.62680 1.2580 Ji(mtor)
1 0.50605 1.0157 Ji(mtugr)
2 —0.06854 —0.03415 Ji(mtuor)
3 —0.0028703 —0.005761 Ji(mtusr)
4 0.014004 0.028106 Ji (Tt gr)
5 —0.011509 —0.02310 Ji(mtusr)
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TABLE 4-37 Characteristics of a Bayliss Circular-Aperture Distribution, 7 = 10

3-dB Beam Edge

Sidelobe Beam Peak, ATL PEL
Level (dB) ka/2 sin O, kal2 sin 6, ka/2 sin 6, (dB) (dB)
20 2.2366 1.165 3.700 1.47 1.80

25 2.3780 1.230 3.940 1.15 1.89

30 2.5096 1.290 4.160 1.32 1.96

35 2.6341 1.346 4.363 1.62 2.01

40 2.7536 1.399 4.551 1.95 2.05

Figure 4-28 contains a plot of a Bayliss circular-aperture distribution (7 = 6)
designed to have sidelobes 30dB below those of the Taylor distribution with 30-dB
sidelobes. The losses to the difference pattern are about 2.6 dB higher than the sum
pattern. The amplitude taper efficiency is calculated from

rd r:|

! i1
[ 4|5 B
! i1
n? /0 4 ‘Zmzo By Jy ()

where the integrals over ¢’ have been separated and evaluated. An integral expression
for the phase error efficiency can be found similarly by evaluating the separable cos ¢’
integrals along the coordinate ¢ = 0, the peak:

2

ATL =

(4-100)

2
rdr

I a1 z
2nf E OBmJI(anr)Jl(nUr)rdr
0 m=|

1 i
|:-/0 4 'Zmlo B, Ji (1) ra’ri|

Table 4-37 lists the parameters of Bayliss circular-aperture distributions with 7 = 10
and various sidelobe levels. The optimum design for 7 = 10 occurs for 25-dB sidelobes.

PEL(U) =

. (4-101)

4-21 PLANAR ARRAYS

We design planar arrays with nearly circular boundaries by sampling circular distri-
butions. Given enough sample points in the array, a distribution such as the circular
Taylor will be modeled adequately to produce a similar pattern. We can use pattern
multiplication to combine the designs for linear arrays into a planar array, but in the
special case of a square array, a true Chebyshev design can be obtained in all planes.
A technique has been developed to allow the synthesis from pattern nulls provided
that some of the possible nulls are not specified. We are still left with the problem of
specifying the numerous nulls possible with a planar array.

Chebyshev Array [23] When we combine two Dolph—Chebyshev linear arrays
through pattern multiplication, it produces a pattern that has lower sidelobes than
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those specified in all planes except the principal ones along the axes. These designs
give beamwidths in the diagonal planes that are wider than necessary. The pattern
deviates from the optimum because sidelobes are suppressed more than necessary.

We use a technique on a square array to produce equal sidelobes in all constant
¢ cuts around the array. The array is square in the number of elements, but different
spacings along the axes can produce a rectangular array. We expand the pattern in a
single Chebyshev polynomial:

Ty _1(xgcos ¥y cos yrp) (4-102)

where Y| = kd, cos cos¢ + &; and Y, = kd,cos@sing + L =2N or L =2N +1
for L? elements in the array. We compute x from Eq. (4-51) for a given sidelobe level.
The pattern for an odd number of elements in each row and column is

N+1N+1

E©.¢) =Y emtaluncos2(m — yricos2(n— Dy L=2n+1

m=1 n=1

where ¢, =1 for m =1 and ¢,, = 2 for m # 1. Similarly,

N N
E©.¢) =4 ILmcosm — yicos@n — Dy, L =2n

m=1 n=1

The element excitations I, are given by

2\ 2 NN+ 1 -
Lo, = <Z> Z ZapquL,l [xocos (P 2 ) cos (g 2 )n]

p=1 g=1
2n(m —D(p -1 cos 2n(n — D@ -1

X COS

L=2N+1 (4-103)

or

on(n-3)(r-3) 2n(1-3)(e-3)
2 2 2 2 L =2N (4-104)

4-22 CONVOLUTION TECHNIQUE FOR PLANAR ARRAYS

We may synthesize a desired pattern through multiplication of two or more simpler
patterns. Because patterns derive from Fourier transforms of distributions in space, the
distribution to produce the product of two simpler patterns is the convolution of the
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simpler distributions [24, p. 30]. We find it easier to synthesize by using a few elements
and then build up patterns through multiplication.

Consider the convolution of a linear array with another linear array on the same
axis. We describe the array as a distribution consisting of weighted impulse functions,
8(x — x;):

N
Aj(x) =) apd(x —x;)

i=1

where ay; are the feeding coefficients and x; are the locations for an N;-element array.
To determine the array that gives the product of two array patterns, we convolve the
second array, A,(x), with the first:

AL(x) % As(x) = / A(D A (x — 1) dT (4-105)

We evaluate a function at the argument of the impulse function when we convolve the
two arrays [25, p. 237]. Equation (4-105) reduces to

N1 M

AL() % Ap(x) = Y Y ayand(x — x; — x;) (4-106)

i=1 j=I

Example Consider the two 2-element arrays in Figure 4-29 and the graphical solution
of the convolution. Figure 4-29a shows the location of the elements in the arrays on
the x-axis. To perform the convolution, we reflect the x-axis of one array and move it
across the other array while performing the integral at each location x, the coordinate of
the convolution. We have a net result to the integral only when two impulse functions
are aligned, x = x; + x;. We have four elements in the resulting array (Figure 4-29¢).
If the elements are equally spaced in the two arrays, two elements will sum into one.

Patterns are the result of a three-dimensional Fourier transform. For a general array
with element locations r;, we must perform a convolution along all three axes to find
the distribution that gives the product of the patterns of two simpler distributions. For
the general array, Eq. (4-106) becomes

Ar(r)  Ay(r) = Y > ayiay8(r —r; — 1)) (4-107)

where r is the location vector and r; and r; are the locations of elements in the
two arrays.

A rectangular array can be described as the convolution of a linear array on the x-
axis with a linear array on the y-axis. When y = y; there is a string of values x = x;
that satisfy the impulse argument [Eq. (4-107)]. These are the locations of the elements.
We step through all values of y; until the entire array is formed. Equation (4-107) gives
the feeding coefficient of each element a;;a,; since no two elements of the convolution
are in the same place. The pattern of the rectangular array is the product of the linear
array patterns along the axes.
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FIGURE 4-29 Convolution of two linear arrays: (a) separate arrays; (b) graphical convolution;

(¢) convolution.

Given an array, we compute the pattern from a Fourier transform containing N
terms each of which corresponds to one element. Ignoring the element pattern, we

N
E = E a;e’*ri

i=1

have
(4-108)

The array has N — 1 independent nulls (zeros) in the pattern. Given the set of nulls k;
we can substitute them into Eq. (4-108) to form a matrix equation in N — 1 unknowns
a;. We must normalize one coefficient, a; = 1, to solve the set of equations for the
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feeding coefficients:

a ek
az e/l

[BI| . |=— ) (4-109)
ay ejk[\;—l'rl

where b;; = e/¥Ti+1. We find the direct solution of Eq. (4-109) unwieldy for a large
array. We can subdivide the array into smaller arrays whose convolution is the total
array and use pattern multiplication. We reduce the number of nulls we need to specify
in the synthesis of an array.

Convolution can be used in the synthesis of planar arrays by using a rhombic
array (four elements) as the basic building block [26] (Figure 4-30). If we convolve
two identically shaped rhombic arrays, we obtain a nine-element (three on a side)
array (Figure 4-300). By continuing to convolve the resulting array with other rhombic
arrays, we can build up a large array in the shape of the rhombus. Each rhombic array
has three pattern nulls without the symmetry of the linear array about some axis.
The rhombic array has symmetry only about the plane of the rhombus. We build up
an array of N + 1 by N + 1 elements through the convolution of N rhombic arrays.
The original array has (N 4+ 1)(N + 1) — 1 independent nulls. The convolution of N
rhombic arrays reduces the number of independent nulls to 3N. Similarly, when we
use the convolution of two linear arrays to form a square array, N + 1 by N + 1, the
number of independent nulls is 2N, or N for each array.

We denote a single rhombic array as RA; and the convolution of two rhombic
arrays as RA,. The number of elements on each side of an RAy array is N + 1. We
can convolute a rhombic array with a linear array to form an M x N array (M > N).
Denote the linear array by Ly, where the array has N + 1 elements. The planar array
P Ay v becomes

PAyn =Ly-n* RAN— (4-110)

We specify 3(N — 1) nulls in space for the rhombic arrays and M — N nulls about
the axis of the array. Like all convolutions, the pattern is the product of the individual
array patterns.

O/ O/O
o~ : .
\ . 5 _—— O\\
O/ \O/O/O
(a) (b)

FIGURE 4-30 Rhombic array with its convolution: (a) thombic array RA;; (b) convolution
of two rhombic arrays RA;.
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This method allows the specification of nulls in space with other than linear symme-
try. Second, it reduces the required specification of nulls. Third, it provides a method
for synthesis of triangularly or hexagonally spaced elements.

Example Consider the six-element rectangular array shown in Figure 4-31q. It can
be broken down into the convolution of a four-element rectangular array (rhombic)
and a two-element linear array from Eq. (4-110):

PAs, =L *RA,
Pick the three nulls of the rhombic array at
0 ‘ 90° 90° 90°
¢ | 110° —60° 180°

We measure the pattern nulls from the normal of the plane containing the rhombus and
the x-axis (¢). For an array of broadcast towers, the nulls point toward the horizon.
We restrict 0 to less than or equal to 90°. We substitute the positions of the elements
(Figure 4-31b) and the nulls into Eq. (4-109) to solve for the feeding coefficients of
the rhombic array (Table 4-38).

o
® Fo
0.3\ ® O

>
%§W_¢_l%}: - **%H
9

P
ht——— N/2 — e — ] @ ’r @
® @
(a) (b) (c)

FIGURE 4-31 Rectangular array from convolution of rhombic and linear arrays: (a)
six-element rectangular array; (b) thombic array; (c) linear array.

TABLE 4-38 Coefficients of Rhombic Array for
Horizon (6 = 90°) Nulls at ¢ = 100°, —60°, and 180°

Amplitude Phase
Element (dB) (deg)
1 0.00 0.0
2 4.12 —79.2
3 0.00 —109.2
4 4.12 -30.2
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TABLE 4-39 Coefficients of Six-Element
Rectangular Array with Pattern of Figure 4-32b

Amplitude Phase
Element (dB) (deg)

1 0.00 0.0
2 8.13 —88.5
3 4.12 177.2
4 0.00 147.2
5 8.13 —124.3
6 4.12 -30.1

We pick the single null of the two-element array at 135°. This null has symmetry
about the axis of the array. With the first element at zero phase, we pick the element
phase to cancel the first element voltage when 6 = 135°:

phase = 180° — 360°(0.3)cos 135° = 256.37°

When we convolute the two arrays, we obtain the feeding coefficients from Eq. (4-107)
(Table 4-39). The elements in the center that result from two convolutions have summed
feeding coefficients producing a six-element array. Figure 4-32 shows the patterns of
the convolution. We obtain the six-element array pattern (Figure 4-32b) by multiplica-
tion of the patterns of the individual subarrays (Figure 4-32a).

4-23 APERTURE BLOCKAGE
Blocking an aperture reduces the gain and raises the sidelobes. The blockage either

scatters the aperture power in unwanted directions in a broad pattern or is just an area
without fields. Scattered blockage causes higher sidelobes and greater loss than the

Rhombic

Pattern of
convolution

NCRDA
NS

FIGURE 4-32 Patterns of the convolution of a rhombic and a linear array to form the
six-element rectangular array of Figure 4-31.
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nonexcitation blockage. Scattered blockage has the same power input as the unblocked
aperture, but fields scattered off the blockage do not contribute significantly to the
maximum field. Compared to the unblocked aperture, the blockage efficiency becomes

: ,
‘ f/ Ee/*" ds’
blocked

P
// Ee/*" ds’
unblocked

We use Eq. (2-16) to compute the directivity of each distribution by using the total
power radiated from the unblocked aperture [denominator of Eq. (2-16)] for the blocked
aperture. A centrally blocked circular aperture with a uniform distribution has the
blockage efficiency (1 — b%)? (scattered), where b is the normalized blockage radius.
The blockage of a circular Gaussian distribution has a simple blockage function:

2
[max scattered 4-111)

blockage efficiency = X

max

et — e\ ?
blockage efficiency = (17’))
—e

The second type of blockage is an area without fields. The blockage does not waste
power in the aperture. When we take the ratio of the two directivities, we must account

for the power in each aperture:
2
/ / |E>ds’
max unblocked

I
‘// Ee/*™ ds’'
blocked
2
/ / |E|*>ds’
max blocked

‘// Ee/*" dg’
unblocked
(4-112)

The blockage of a uniformly excited centrally blocked circular aperture where the
center is not excited reduces the directivity only by the area lost from the aperture,
1 — b? (nonexcitation). In a sense, nonexcitation blockage is not a true loss; it is a loss
of potential radiation aperture.

Table 4-40 lists the blockage losses of centrally blocked circular apertures calculated
by Eq. (4-111), the more severe case. The uniformly excited aperture is affected least
by blockage. All points are equally important. The tapered distributions suffer more
loss with increased taper toward the edge. The lists for different tapered distributions
track each other fairly closely, and any one of them gives a good estimate of the
blockage loss. Blockage causes sidelobes. In the case of scattered blockage the exact
sidelobes cannot be found without an analysis of the scatterer. A Cassegrain reflector
would need a geometric theory of diffraction (GTD) analysis to locate the directions of
scattering from the subreflector. We can handle the nonexcitation blockage in a general
fashion. Consider the aperture to be broken into two radiating apertures. The first is
the unblocked aperture; the second is the blockage. If we take the blockage aperture
to be 180° out of phase with respect to the unblocked aperture distribution, the sum
gives us the blocked distribution.

We use this analysis as an approximation to scattered blockage with the realization
that scattering may produce unpredicted lobes.

blockage efficiency = nonexcitation
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TABLE 4-40 Blockage Losses of Circular-Aperture Distributions (dB)

Central Gaussian Taylor Hansen

Blockage (%) Uniform 12-dB Edge 30dB,n =6 40dB,n=6 30dB 40dB

5 0.02 0.04 0.04 0.05 0.05 0.07

6 0.03 0.06 0.06 0.08 0.07 0.09

7 0.04 0.08 0.08 0.11 0.09 0.13

8 0.06 0.10 0.10 0.14 0.12 0.17

9 0.07 0.13 0.13 0.18 0.16 0.21
10 0.09 0.16 0.16 0.22 0.19 0.26
11 0.11 0.19 0.20 0.26 0.23 0.32
12 0.13 0.23 0.24 0.31 0.28 0.38
13 0.15 0.27 0.28 0.37 0.33 0.44
14 0.17 0.32 0.32 0.43 0.38 0.51
15 0.20 0.36 0.37 0.49 0.43 0.59
16 0.22 0.41 0.42 0.56 0.49 0.67
17 0.26 0.47 0.48 0.63 0.56 0.76
18 0.29 0.52 0.54 0.71 0.63 0.85
19 0.32 0.58 0.60 0.79 0.70 0.95
20 0.36 0.65 0.67 0.88 0.77 1.06
21 0.39 0.71 0.74 0.97 0.86 1.17
22 0.43 0.78 0.81 1.07 0.94 1.28
23 0.47 0.86 0.88 1.17 1.03 1.40
24 0.52 0.94 0.96 1.27 1.12 1.53
25 0.56 1.02 1.05 1.38 1.22 1.66

We can calculate an upper bound on the sidelobes easily. Assume that the block-
age distribution is uniform and compared to the main aperture, produces a broad, flat
beam. Since the blockage aperture fields are 180° out of phase from the unblocked
aperture fields, their radiation subtracts from the main beam and adds sidelobes 180°
out of phase with respect to the main lobe. The sidelobe due to the blockage is propor-
tional to the area: sidelobe level = 20 log b. This formula estimates values much higher
than are realized. Table 4-41 lists the sidelobes of a centrally blocked Taylor circular
aperture distribution with 40-dB design sidelobes. They are far less than predicted by
the upper bound.

TABLE 4-41 Sidelobe Level Due to Central Blockage of a Circular Aperture with
Taylor Distribution (40dB, 7 = 6)

Sidelobe Sidelobe Sidelobe
Blockage Level Blockage Level Blockage Level
(% of Diameter) (dB) (% of Diameter) (dB) (% of Diameter) (dB)
7 34.5 13 26.1 19 21.1
8 32.8 14 25.6 20 20.4
9 31.3 15 24.2 21 19.7
10 29.8 16 23.3 22 19.1
11 28.5 17 21.7 23 18.5
12 27.3 18 21.7 24 18.0
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Ludwig [27] has found distributions to reduce the sidelobes of blocked apertures.
The first sidelobe can be reduced only a little, but the outer sidelobe levels can be
controlled. In many applications one high sidelobe next to the main beam is acceptable.
A Taylor distribution for circular apertures with a zero edges value, like Section 4-5
for linear apertures, reduces the far-out sidelobes. A second aperture function with a
doughnut distribution also reduces all but the first sidelobe. Reducing the edge taper
of the blockage distribution lowers the blockage-caused sidelobes.

Sachidananda and Ramakrishna [28] use a numerical optimization technique to
reduce the sidelobes of a blocked aperture for both the sum and difference patterns of a
monopulse excitation. They start with the Taylor and Bayliss circular-aperture distribu-
tion functions [Eqs. (4-94) and (4-98)]. The coefficients B,, are determined through the
numerical optimization, which restrains the sidelobes while optimizing the monopulse
tracking coefficients and sum pattern gain.

4-24 QUADRATIC PHASE ERROR

A linear phase error function scans the aperture beam with some loss of gain because
of the shrinking of the projected aperture in the direction of the main beam. Quadratic
phase error (order 2) does not scan the beam but causes loss and a change in the
sidelobe levels and the depth of the nulls between them. This phase error arises mainly
from defocusing when the source of radiation appears as a point source. A feed axially
displaced from the focus of a parabolic reflector produces quadratic phase error in
the aperture. The flare angle of a horn changes the distance from the assumed point
source in the throat to different points in the aperture at the end of the flare. We can
approximate the phase distribution as quadratic.
We express the quadratic phase error in a line-source aperture as

linear; e —/2mS@x/a)’ Ix/a] <0.5 (4-113a)

where S is a dimensionless constant, cycles and a is the aperture width. Similarly, the
circular-aperture phase is

circular: e /27 p < (4-113b)

where r is the normalized radius. We use Eq. (4-7) with the linear-source aperture phase
error [Eq. (4-113a)] and use Eq. (4-9) with the quadratic phase error [Eq. (4-113b)] in
a circularly symmetrical aperture distribution to compute phase error loss:

a/2 2
‘/ E(x)eszﬂs(zx/a)z dx
_ —a/2

PEL, =
al?

|:-/ |E(x)] dx:|
—a/2

2

linear (4-114)

2

1
/ E(r)e_jznsrzr dr
0

1 2
[/ |E(r)|ra’ri|
0

PEL = circular (4-115)
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A few distributions have simple formulas for the phase error efficiency when excited
with quadratic phase error [29]:

1
m@mhw:mg=ﬁkmﬁwﬁ@®] (4-116)

where C(¢) and S(¢) are the Fresnel integrals, tabulated functions:

. S 2
uniform circular: PEL = (Sm; ) 4-117)
T

0%[1 —2e¢ " cos(2nS) + e~ 2]

Circular Gaussian(e_’”z) : PEL =
[p? + 2n8)?](1 —e7)?

(4-118)

We use numerical integration for the general distribution.

Table 4-42 lists quadratic phase error losses for various linear-aperture distributions.
We will use the lists for uniform and cosine distributions to evaluate the gains of rect-
angular horns. The effect of quadratic phase error decreases as the distribution taper
increases. Table 4-43 lists results for a few circularly symmetrical aperture distribu-
tions. Quadratic phase error raises the sidelobes of low-sidelobe antennas. Figure 4-33
shows the effects on a circular Taylor distribution with 35-dB design sidelobes. The
first lobe increases, and the null between the main lobe and the first sidelobe disappears
as the quadratic phase error increases. A source antenna spaced a finite distance, as on

TABLE 4-42 Quadratic Phase Error Loss of Linear-Aperture Distributions (dB)

Cosine? + 19.9-dB

Cycles, S Uniform Cosine Cosine? Pedestal
0.05 0.04 0.02 0.01 0.02
0.10 0.15 0.07 0.04 0.07
0.15 0.34 0.16 0.09 0.16
0.20 0.62 0.29 0.16 0.28
0.25 0.97 0.45 0.25 0.44
0.30 1.40 0.65 0.36 0.63
0.35 1.92 0.88 0.49 0.84
0.40 2.54 1.14 0.64 1.08
0.45 3.24 1.43 0.80 1.34
0.50 4.04 1.75 0.97 1.62
0.55 4.93 2.09 1.16 1.90
0.60 5.91 2.44 1.36 2.19
0.65 6.96 2.82 1.57 2.48
0.70 8.04 3.20 1.79 2.76
0.75 9.08 3.58 2.01 3.04
0.80 9.98 3.95 2.23 3.29
0.85 10.60 431 2.46 3.52
0.90 10.87 4.65 2.69 3.73
0.95 10.80 4.97 2.91 3.92

1.00 10.50 5.25 3.13 4.09
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TABLE 4-43 Quadratic Phase Error Loss of Circular-Aperture Distributions (dB)

. Taylor Hansen
Gaussian - - -
Cycles, S Uniform 12-dB Edge 30dB 40dB 30dB 40dB
0.05 0.04 0.03 0.04 0.03 0.03 0.02
0.10 0.14 0.13 0.15 0.11 0.11 0.08
0.15 0.32 0.29 0.33 0.26 0.25 0.19
0.20 0.58 0.53 0.59 0.46 0.45 0.34
0.25 091 0.82 0.93 0.72 0.70 0.53
0.30 1.33 1.20 1.36 1.03 1.01 0.76
0.35 1.83 1.064 1.86 1.41 1.38 1.03
0.40 242 2.16 2.46 1.84 1.81 1.34
0.45 3.12 2.76 3.16 2.33 2.30 1.69
0.50 3.92 3.44 3.95 2.87 2.85 2.08
0.55 4.86 4.22 4.86 3.47 3.46 2.50
0.60 5.94 5.08 5.88 4.11 4.16 2.95
0.65 7.20 6.04 7.01 4.79 4.85 3.43
0.70 8.69 7.10 8.25 5.50 5.63 3.94
0.75 10.46 8.24 9.56 6.21 6.43 4.46
0.80 12.62 9.44 10.87 6.91 7.26 4.98
0.85 15.39 10.66 12.01 7.56 8.09 5.51
0.90 19.23 11.81 12.80 8.14 8.88 6.03
0.95 12.75 8.62 9.60 6.53
1.00 13.36 8.99 10.20 6.99
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FIGURE 4-33 Effects of quadratic phase error on 35-dB circular Taylor distribution (7 = 6).
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an antenna measurement range, feeds the aperture with a quadratic phase error. The
source would have to be spaced 8 D?/A to measure the sidelobe level within 0.5 dB.
Low-sidelobe antennas require greater distances than the usual 2D?/A for accurate
sidelobe measurement [30].

4-25 BEAM EFFICIENCY OF CIRCULAR APERTURES WITH
AXISYMMETRIC DISTRIBUTION

From Eq. (1-27) we can derive an approximate formula for axisymmetric distributions
that depends on the normalized variable k, (or U). For large apertures we can approxi-
mate cos 6 & 1 in the main beam, integrate the ¢ integral to obtain 27, and incorporate
the (ka)? directivity factor into the integral:

kr1
ATL - PEL / | f (k) |k, dk,
0

beam efficiency = 2 OF 4-119)
ATL-PEL/M | £(U)|*U dU
0 (4-120)
21 £(0)]?

where k, is the factor (2ma sinf)/A, U (the Taylor distribution factor) is (2a sin 6)/A,
and a is the aperture radius. U; and &, correspond to the beam edge 6,. The integrals of
Egs. (4-119) and (4-120) cause underestimations of beam efficiency for small apertures
when we ignore the cos 8 factor, which should divide the argument of the integral.

Table 4-44 lists beam edges in k,-space (2ma sin 8)/A for various distributions along
with the beam efficiency at the null beam edge. We can use it to determine the aperture
size required for a given beam efficiency beamwidth specification.

Example Calculate the aperture radius to give a 90% beam efficient beamwidth of
5° for the distribution: parabolic on 12-dB pedestal.

TABLE 4-44 Beam Efficiencies of Axisymmetric Circular-Aperture Distributions

k, =2masinf/1

Beam Efficiency Specified Beam Efficiency (%)

Distribution Null, &, at Null (%) 80 85 90 95
Uniform 3.83 83.7 2.82 4.7 5.98
Parabolic 5.14 98.2 2.81 3.03 3.31 3.75
Parabolic 4 12-dB pedestal ~ 4.58 96.4 2.60 2.81 3.10 3.64
Taylor

30dB,n =6 4.90 96.2 2.65 2.88 3.19 3.82

30dB, n =10 4.74 91.4 2.76 3.06 3.65

40dB,n =6 6.00 99.5 2.90 3.13 342 3.85
Hansen

30dB 5.37 99.3 2.79 3.01 3.28 3.69

40dB 6.64 99.9 3.17 342 3.73 4.19
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From Table 4-43,

2na . 5°
k- (90%) = 3.10 = — sin —
A 2
a 3.10
—=—————=11.31
A 2msin(5°/2)

The beam edge has cos 2.5° = 0.999, which justifies the approximation in Eq. (4-119).
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DIPOLES, SLOTS, AND LOOPS

A dipole is a conductive rod usually split in the center and fed from a balanced
transmission line that carries equal and oppositely flowing currents. Not all dipoles are
split and fed in the center because currents can be excited on it electromagnetically or it
can be shunt fed. The dipole length determines possible current distributions in modes,
and when we place a continuous rod near an antenna radiating a linear polarization
component directed along the rod, it excites a standing-wave current on the rod. The
amount excited on the rod depends on how close its length is to resonance and the
antenna spacing. Of course, the continuous rod loads the fed antenna through mutual
coupling. We can feed the continuous rod from a coax line by attaching the outer
conductor to the center and then connecting the center conductor away from the center
in a shunt feed.

A slot is a narrow-width opening in a conductive sheet. When excited by a voltage
across the narrow dimension it appears to radiate from an equivalent magnetic current
flowing along the long dimension that replaces the voltage (or electric field) across it.
Most slots, similar to dipoles, have a finite length with either short or open circuits
at both ends. The voltage along the slot forms a standing wave. Of course, magnetic
currents are fictitious, and real electric currents flow in the conductive sheet around
the slot. These currents do not have a simple distribution and are difficult to use for
analysis, so we use simpler magnetic currents, although when analyzing a slot using the
method of moments, we model the conductors around the slot and calculate patterns,
reaction, and so on, from these real currents. Initial slot calculations assume that the
conductive sheet is infinite, similar to the analysis of dipoles situated in free space.
Complete analysis of the dipole requires analysis in the presence of the mounting
configuration. Similarly, full analysis of slots includes the effects of the finite sheet
and scattering from the objects around it.

Modern Antenna Design, Second Edition, By Thomas A. Milligan
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After considering ideal cases, we analyze the effects of finite ground planes, nearby
scatterers, and the interaction between dipoles and slots. The batwing antenna presents
an unusual case where the antenna at first glance looks like a dipole but actually
radiates from a combination of a slot and a finite dipole structure. Another interesting
case is the waveguide slot. Currents flow on the inside surfaces of a waveguide, and the
finite current skin depth prevents it from reaching the outside. The metal walls shield
the currents and prevent the loss of power by radiation. When we cut a slot in the
wall, the internal currents flow out the slot and onto the outside of the waveguide and
radiate. The excitation and length of the slot relative to the internal currents determine
the amount radiated. Similarly, the slots load the waveguide as a transmission line
because of the loss of power.

Our analysis starts with a dipole in free space or a slot on an infinite conductive
sheet. The two problems are duals. Dipoles radiate from a standing-wave electric (real)
current, whereas the slot radiates from a standing-wave magnetic current. We use the
same mathematics for both patterns. By the Babinet—Booker principle of complemen-
tary structures, we relate the input impedance of one to the other. Both structures
radiate the same pattern but differ in polarization. Dipoles and slots share the same
analysis through duality, so we develop them together. Singly and in arrays, they satisfy
many antenna needs. Although they share a dual analysis, they have unique feeding
requirements. We discuss baluns for dipoles and waveguide slot excitations as practical
implementations.

In Chapter 2 we presented the analysis of a small loop excited with a uniform
current (Section 2-1.2). The loop current was replaced with a small magnetic current
element flowing along the normal to the plane of the loop. Multiple turns and ferrite
loading increase the efficiency of loops and produce a more useful antenna. Exciting
a uniform current on a loop is a difficult task that offers little practical benefit. The
loops discussed will have standing-wave electric currents excited on them determined
by feeding methods. The natural balun used to excite a small loop produces a standing-
wave current with zero current at the point where the two sides are connected to form
the loop. A resonant length loop of about one wavelength perimeter radiates a dipole
pattern from a standing-wave current. The quadrifilar helix consists of two loops twisted
around a common axis. The twist produces currents that radiate circular polarization
from each loop. Analysis shows that the currents are standing wave.

Feeding a dipole or loop requires a balun to prevent current flow either along the
outside of a coaxial feeder or excitation of unbalanced currents along a two-wire line.
The current flowing along the outside of the coax or unbalanced currents on the two-
wire line radiate in unwanted directions or radiate undesired polarization. When we
design an antenna without considering or knowing its final mounting, we produce an
uncontrolled situation without a balun. Our initial configuration may work without a
balun, but the antenna may fail to produce the desired pattern in the final location. If
you control the installation completely, you can reduce your design effort and may be
able to eliminate the balun.

5-1 STANDING-WAVE CURRENTS

Think of a dipole as a diverging two-wire transmission line. The characteristic
impedance increases as the wave approaches the open-circuited ends. The slot is the
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FIGURE 5-1 Standing wave.

dual of a strip dipole. A voltage excited across the slot propagates along a slotline
toward short-circuited ends. Each type of transmission line reflects the incident wave
from the terminations. The combination of two waves traveling in opposite directions
creates a standing wave on the line. The current and voltage are 90° out of phase
and 90° out of space phase (Figure 5-1). Current and voltage change places on the
short-circuited termination of the slot.

The dipole is not a uniform transmission line, but we can approximate the current as
a standing wave with the current vanishing on the ends. The slot voltage is a standing
wave also vanishing on the ends. The standing waves for a center-fed dipole or slot
are expressed as follows:

Dipole Slot
. L . L
I =1Iysink| = —z V =Vysink| = —z z2>0
2 2
(5-1)
. L . L
I = Iysink 5+z V = Vysink §+Z z<0

The voltage distribution on the slot is equivalent to a magnetic current.

We calculate radiation from the linear sinusoidal current distributions by the vec-
tor potentials: electric (slot) (Section 2-1.2) and magnetic (dipole) (Section 2-1.1).
Figure 5-2 gives typical sinusoidal distributions for various lengths. The currents match
at the feed point and vanish on the ends. Consider the pattern of the 2A dipole at
6 = 90°. We can assume that it is a continuous array and sum the fields from each

0
- 1 _ .
1(V) 1(V) > (V)
H ; / - <L:
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Electrical length

FIGURE 5-2 Sinusoidal distributions.
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portion along the axis. The equal positive and negative portions of the standing-wave
current sum to zero and produce a pattern null normal to the axis. By integrating
Egs. (2-5) and (2-10), we compute far fields for radiators centered on the z-axis through
the far-field conversion [Egs. (2-1) and (2-9)] [1, p. 82]:

E, = jﬂi _jkr €O8(kL/2 cos ) — cos(kL/2)

e :
21tr sin @

dipole (5-2)

where L is the total dipole length. Using the ¥ = O plane as the slot ground plane, the
far-field magnetic field is found as

+jVy ik cos(kL/2cos8) — cos(kL/2)
= e

Hy = .
n2nr sin 6

slot (5-3)

where L is the total slot length. We apply the upper sign for ¥ > 0 and the lower sign
for Y < 0. The electric field of the slot is found from E, = —nHjy. Equations (5-2) and
(5-3) have the same pattern shape and directivity. We integrate the magnitude squared
of Egs. (5-2) and (5-3) to determine the average radiation intensity. Joined with the
maximum radiation intensity, we calculate directivity (Figure 5-3) versus length.

5-2 RADIATION RESISTANCE (CONDUCTANCE)

The far-field power densities, Poynting vectors, are given by

|Eql?
S, = n
|Hy|*n slot

dipole
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where 7 is the impedance of free space (376.7 2). When these are integrated over the
radiation sphere to compute the power radiated, the results contain either |Iy|?> (dipole)
or |Vy|? (slot), the maximum sinusoidal current (voltage). We define the radiation

resistance (conductance) as

R, = |10r|2 dipole
5-4
P (5-4)
F = |V |2 slot
0

Figure 5-4 is a plot of the radiation resistance of each versus length [2, p. 157]. The
input resistance differs from the radiation resistance because it is the ratio of the input

current (voltage) to the power radiated:

. kL .
I; = Isin - dipole

(5-5)
. kL
V; = Vjysin — slot
2
Combining Egs. (5-4) and (5-5), we find that
R, .
Ri = ISP dlpole
sin“(kL/2)
(5-6)
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The input resistances (Figure 5-4) differ from the radiation resistances by Eq. (5-6).
The input resistance of a one-wavelength dipole is large but not infinite, as shown;
it depends greatly on the diameter and input region. If we take the product of the
radiation or input resistances, we determine that

e
RdipoleRslot = Z (5'7)
one of the consequences of the Babinet—Booker principle [3].

The input resistance depends on the current at the input [Eq. (5-6)]. When the
standing-wave current is high and the voltage is low, the input resistance is moderate. A
center-fed half-wavelength dipole has the same input resistance as radiation resistance,
since the current maximum occurs as the input. On the other hand, a center-fed half-
wavelength slot has a current minimum (voltage maximum) at its input, which gives
it high input resistance. When both are a full wavelength long, the dipole standing-
wave current is at a minimum and the slot standing-wave current is at a maximum
(Figure 5-2). The dipole has a high input resistance and the slot has a low input
resistance. We can lower the input resistance by feeding at a high current point, but
we may excite a distribution different from that expected.

A short dipole looks like a capacitor at the input. As the length increases, the
radiation resistance grows and the capacitance decreases. Just before the length reaches
A2, the capacitance becomes zero. The exact length at which the antenna resonates
(zero reactance) depends on the diameter of the elements and the input gap. A good
starting point is 95% of a half wavelength. Beyond the resonant length, the dipole
becomes inductive. The impedance of a thin half-wavelength dipole is 73 4 j42.2 2,
whereas the resonant-length dipole resistance is about 67 2. The slot looks like an
inductor when short. Think of it as a short-length short-circuited shunt slotline stub. The
inductance increases as its length increases and the slot resonates like the dipole, just
short of A/2. Additional resonances occur at longer lengths. Increasing the frequency
is equivalent to increasing the length for the thin dipole.

5-3 BABINET-BOOKER PRINCIPLE [3; 4, p. 337]

A strip dipole and a slot are complementary antennas. The solution for the slot can
be found from the solution to an equivalent dipole by an interchange of the electric
and magnetic fields. Not only the pattern but also the input impedance can be found.
Figure 5-5 shows two such complementary structures. Babinet’s principle of optical
screens (scalar fields) states that given the solutions to the diffraction patterns of a
screen, F;, and the screen’s complement, F,, the sum equals the pattern without the
screen. Booker extended Babinet’s principle to vector electromagnetic fields. Strict
complementation of an electric conductor requires a nonexistent magnetic conductor.
Booker solved this problem by using only perfectly conducting infinitesimally thin
screens and by interchanging the electric and magnetic fields between the screen and
its complement. If we take two such complementary screens and perform line integrals
over identical paths to compute the impedance of each, we obtain the result
2

n
Z\Z, = T (5-8)
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FIGURE 5-5 Complementary screens.

where Z; is the input impedance of the structure, Z. the input impedance of the
complementary structure, and 7 the impedance of free space (376.7 ©2). Equation (5-8)
extends Eq. (5-7) to the total impedance and includes mutual impedances as well as
self-impedances.

Certain antennas, such as flat spirals, are self-complementary—an exchange of the
spaces and conductors leaves the structure unchanged except for rotation. For a two-
arm structure,

n?

z; T Zo = 1882

Rumsey [5, p. 28] extended these ideas to antennas with more than two conductors to
determine the input impedances in various feeding modes.

We must relate flat-strip dipoles to normal round-rod dipoles to use the available
results for round dipoles. The diameter of an equivalent round rod equals one-half the
strip width of the flat structure. Consider a thin dipole with its near A/2 resonance of
67 Q2. We calculate equivalent slot impedance from Eq. (5-8):

376.7
dot = ——— = 530Q2
slot 4(67)
A half-wavelength slot impedance is
376.7% .
Zgot = —————— =363 — ]211 Q

4(73 + j42.5)

The A/2 dipole is inductive when it is longer than a resonant length, whereas the slot
is capacitive.

5-4 DIPOLES LOCATED OVER A GROUND PLANE

We analyze a dipole over a ground plane as a two-element array of the dipole and
its image. The ground plane more than doubles the gain of the element by limit-
ing the radiation directions. We can expect a change in the input impedance as the
dipole interacts with its image. A vertical dipole excites currents in the ground plane,
when transmitting, equivalent to its image. The image is vertical (Figure 5-6) and has
the same phase as the dipole (even mode). The impedance of the dipole becomes
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FIGURE 5-6 Ground-plane images.

Z = Z1 + Zy5. Zy; is the mutual impedance between the dipole and its image spaced
2H, where H is the center height of the dipole over the ground plane. The array
radiates its maximum in the direction of the ground plane. The dipole also radiates its
maximum pattern along the ground plane given by

nllo|? kL’
Upax = P 1 — cos > (5-9)

where L is the dipole length. The radiated power of the single dipole is

Ri»
Pn = Ry || (1 + —)
R

The two-element array increases the field over a single element by 2 and the radiation
intensity by 4:

4Ugmax _ 4nll —cos(kL/2)]?

Po/4m — (Ri+ R

directivity =

We used only the power into the dipole, since no source is connected to the image.
Figure 5-7 is a plot of the directivity of a vertical dipole versus height over the
ground plane.

A horizontal dipole and its image (Figure 5-6) form an odd-mode two-element array
(Section 3-1). The input impedance of the dipole becomes Z; — Z, for the odd-mode
array. The value of the mutual impedance Z;, approaches that of the self-impedance
Z, as the two dipoles move close together. The input impedance approaches zero as
the distance from the dipole to ground plane shrinks. The input impedance of all odd-
mode array elements decreases as the elements approach each other. The two-element
odd-mode array produces a null along the ground plane. The beam peak occurs normal
to the ground plane (¢ = 0°) when the distance between the dipole and its image is
less than A/2 or H < A/4. The pattern bifurcates after that height is exceeded. The
maximum radiation from the array is

4 sin? 2nH

IA

Al>A>

UA,max =

T =
v

4
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FIGURE 5-7 Directivity of half-wavelength dipoles over a ground plane.

The dipole pattern [Eq. (5-2)] increases the radiation intensity. The total input power
into the single dipole becomes

P = [Io]*(Ri1 — Ry2)
UA,max Ud,max

Pin/4TlT

directivity =

After inserting the various terms, we obtain the directivity of a horizontal dipole
over ground:

4 sin®@nH /M1 — cos(kL/2)P L

directivity = (Rt — Ri2) 4
4n[1 — cos(kL/2)]? . 2

(R — R12) 4

Its plot is included in Figure 5-7.

5-5 DIPOLE MOUNTED OVER FINITE GROUND PLANES

Most configurations have a dipole mounted over a finite ground plane. You can calculate
the final pattern by using GTD, PO, or MOM, or you can measure the pattern using the
actual ground plane. Analyses produce idealized patterns, and measurements contain
errors due to the presence of the positioner mounting. If the final system requires



226 DIPOLES, SLOTS, AND LOOPS

@ i )
g Sosrmeesat A

90

90

1RO

FIGURE 5-8 Dipole spaced A/4 over disk ground planes with 1A, 2X, and 101 diameters.

exacting patterns, it has no margin and will fail. In this section we consider dipoles
with idealized ground planes and give you ideas about the final performance or spur
you to use the ground plane purposely as a design parameter.

Figure 5-8 shows the result of a PO analysis of a dipole mounted A /4 above finite
disks 1, 2, and 10A in diameter. The E-plane pattern contains a pattern null at 90° due
to the dipole pattern. The ground plane restricts the broad H-plane pattern as pattern
angles approach 90° and reduces the backlobe more and more as it increases in size.
At one wavelength the disk increases the gain of the antenna from the 7.5 dB given in
Figure 5-7 to 8.1 dB. We can size the ground plane to produce small gain increases.

We can analyze flat-plate reflectors from three perspectives. In the first, plates restrict
radiation directions and thereby increase directivity. Waves polarized parallel with the
surface must vanish on the reflector surface and cause a greater restriction of the
beam. We see this effect in Figure 5-7, which shows horizontal dipoles having greater
directivities than vertical dipoles for close spacing over a ground plane. In the second
method we use aperture theory to analyze the reflector by using an aperture plane and
integrate the fields or evaluate illumination losses. If the phase of the fields on the
aperture varies rapidly, we must either take fine increments in numerical integration
or evaluate only around areas of stationary phase. Third, we can replace the reflector
with images and restrict the valid pattern region. In GTD this method is combined
with diffractions to smooth the field across shadow and reflection boundaries.

In Section 5-4 we analyzed the pattern and gain of a dipole mounted over an infinite
ground plane by the method of images. The antenna and its image formed a two-element
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TABLE 5-1 Results of a GTD Analysis of a Horizontal A /2 Dipole A/4 Over a Limited
Square Ground Plane (H -Plane)

Ground-Plane Front-to-Back H-Plane Pattern H-Plane Phase
Size Directivity Ratio Level at 90° Beamwidth Center
A (dB) (dB) (dB) (deg) )
0.5 5.37 8.4 —6.3 108.5 0.18
0.6 6.32 10.3 -7.6 104.0 0.15
0.7 7.08 12.0 —8.8 100.9 0.14
0.8 7.68 13.5 —-9.8 97.8 0.12
0.9 8.14 14.8 —-10.6 95.1 0.10
1.0 8.34 16.0 —11.2 93.2 0.08
1.2 8.65 17.8 —12.0 93.3 0.04
1.4 8.45 19.1 —12.3 99.4 0.01
1.6 7.96 20.0 —12.2 108.4 0.0
1.8 7.39 21.1 —12.3 112.4 0.0
2.0 6.95 22.3 —124 113.1 0.0
2.5 7.13 25.0 —12.7 115.8 0.0
3.0 7.74 28.3 —13.8 111.4 0.0
4.0 7.28 32.8 —14.8 116.1 0.0
5.0 7.56 354 —16.2 118.0 0.0
10 7.41 36 —19.1 121.3 0.0

array, but with real power into only one element. The imaging method gives limited
information that can be filled with GTD methods. Table 5-1 lists the results of a GTD
analysis of a half-wavelength horizontal dipole located A/4 over a limited square
ground plane. An infinite ground plane and dipole combination has an infinite front-to-
back (F/B) ratio with the fields vanishing in the ground-plane direction. By using the
methods of Section 3-3, we calculate a 120° half-power beamwidth for the two-element
half-wavelength spaced array of the dipole and its image. The F/B ratio increases as
the reflector (ground plane) size increases. Unfortunately, F/B is only the ratio of two
pattern angles. We could tune the size of the ground plane to produce a high F/B ratio
for a nonsquare ground plane, but it holds for only a small range of angles. Figure 5-8
illustrates the general increase in F/B as the size of the ground plane increases. We
expect zero fields at & = 90° on an infinite ground plane, and Table 5-1 shows a
decrease of the fields with an increase of the ground plane. The half-power beamwidth
cycles about 120° as the ground plane increases in size.

Phase center is the apparent radiation center placed at the focus of a paraboloidal
reflector when used as a feed. The phase center of the equivalent two-element array is
located on the ground plane. As we decrease the ground plane, the effect of the image
decreases and causes the phase center to move toward the dipole. In the limit of no
ground plane, the phase center is on the dipole.

Table 5-1 shows the small gain changes that occur as the relative phase of the
ground-plane scattered fields and the dipole direct fields add in the far field. The small
ground plane at A/2 square fails to significantly limit radiation and gain drops. Peak
gain occurs when the ground plane is 1.2X square, but this result would not necessarily
hold for a circular ground plane. In most applications the dipole cannot be mounted
directly above the ground-plane center, but we can add a small ground plane to control
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FIGURE 5-9 V-dipole spaced 0.351 over and tilted 35° toward 1A- and 10A-diameter ground
planes.

the pattern and then place the combination on a pedestal over the larger ground plane.
Most cases should be analyzed or measured in the final configuration.

The dipole E-plane pattern null can be reduced by tilting the two poles down toward
the ground plane. Figure 5-9 illustrates the calculated pattern of a tilted element dipole
above a finite disk ground plane. The feed point of the dipole has been raised to 0.35A
to allow for the 35° tilt to the poles. Tilt and ground-plane height give additional
parameters to control the pattern of the dipole mounted over a finite ground plane.
For example, a horizontal dipole located A/2 over an infinite ground plane forms an
odd-mode (0°, 180°) two-element array using the dipole and its image. The simple
ray-tracing argument given in Section 3-1 predicts a pattern null at zenith. But when
placed over a finite ground plane, the fainter image fails to produce a complete null.

We sometimes mount a dipole spaced away from a metal cylinder that provides a
ground plane to restrict radiation. The curved ground plane allows greater radiation
around the cylinder when rays spread as they scatter from it. Figure 5-10 shows the
horizontal plane pattern for a vertical dipole mounted near a 1A-diameter cylinder for
spacing of 0.25A, 0.4x, 0.5A, and 0.75X. When we space a dipole 1/2 above a large
flat ground plane, the pattern has a null normal to the plane. The cylinder is unable
to generate a full image of the dipole to produce this null, but the pattern does dip
11.2dB from the peak. A dipole spaced 3A/4 over a ground plane produces a three-
lobed pattern that we can see in Figure 5-10 except that the cylinder can produce only
8-dB dips. If we mount the dipole over a 2A-diameter cylinder, the pattern is similar
to Figure 5-10 except that F/B increases and the nulls have greater depths. Table 5-2
summarizes pattern results for vertical dipoles mounted over small cylinders.
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FIGURE 5-10 Horizontal plane pattern for a vertical dipole mounted near a 1A-diameter

cylinder at 0.254, 0.4, 0.5A, and 0.75A distances.

TABLE 5-2 Dipole Mounted Over a Cylinder Aligned with a Cylinder

Gain (dB)

Height (1) Cylinder Gain Peak
Over Cylinder Diameter (1) At 0° At 180° Peak Angle
0.25 0.25 35 -2.1 3.6 0
0.50 6.1 —2.7 6.1 0
1.0 6.7 —6.1 6.7 0
2.0 7.3 —10.7 73 0
0.4 0.25 3.2 0.3 4.9 64
0.50 3.6 —-1.3 6.0 62
1.0 2.2 —53 5.1 60
2.0 2.2 —-9.7 6.0 54
0.5 0.25 0.5 0.9 52 80
0.50 -2.9 —1.8 4.8 80
1.0 -5.9 —4.2 5.2 76
2.0 —8.7 -85 5.9 70
0.75 0.25 33 -0.2 34 102
0.50 5.0 —-0.9 4.7 102
1.0 5.1 -32 4.6 98
2.0 6.4 —6.8 52 90
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FIGURE 5-11 Horizontal dipole mounted over a vertical 11 diameter pole at 0.25), 0.4,
0.5X, and 0.75A distances.

TABLE 5-3 Dipole Mounted Over a Cylinder Perpendicular to a Cylinder

Height (1) Cylinder Gain (dB) Gain Peak Peak Angle

Over Cylinder Diameter (1) At 0° At 180° Perpendicular to Plane Perpendicular to Plane

0.25 0.25 38 26 3.8 0
0.50 6.6 —44 6.6 0
1.0 71 82 7.1 0
2.0 70 —8.6 7.4 30
0.4 0.25 30 =02 4.9 46
0.50 29 =25 6.5 48
1.0 06 7.1 6.4 50
2.0 12 =73 7.3 54
0.5 0.25 0.0 0.5 5.1 54
0.50 —42 =28 52 54
1.0 -56 =57 6.6 56
2.0 —6.7 —63 7.3 60
0.75 0.25 35 —-04 2.7 66
0.50 53 -—16 43 66
1.0 57 —-43 5.1 66

2.0 64 =57 5.8 70
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To complete the analysis, the dipole was rotated so that its axis is perpendicular
to the pole. Figure 5-11 illustrates the patterns calculated for a horizontally polarized
dipole mounted above a vertical pole. We expect a pattern null at 90° in this horizontal
plane due to the dipole polarization null, but the dipole induces curved currents on
the cylinder that radiate and fill in these nulls. The null due to the dipole does narrow
the pattern in the horizontal plane compared to Figure 5-10, and in many cases peak
radiation occurs in the vertical plane. Table 5-3 lists the characteristics of the horizontal
dipole mounted over a vertical pole for various dipole spacing above the pole and
its diameter.

5-6 CROSSED DIPOLES FOR CIRCULAR POLARIZATION

We produce a circularly polarized antenna by placing two dipoles along the x- and
y-axes over a ground plane and feeding them with equal amplitudes and quadrature
phase (0° and —90° for RHC). Without the ground plane the combination radiates
LHC in the —z direction. The ground plane changes the sense of circular polarization
of the wave radiated in the —z-direction and it adds with the direct radiated wave.
The dipoles are fed from either dual folded baluns that produce two separate inputs or
by a split coax balun connecting both dipoles in shunt. The shunt connection requires
differing lengths for the dipoles to produce the 90° phase difference that we call the
turnstile configuration.

The dual-feed antenna uses either a quadrature hybrid equal-amplitude power divider
to feed the two ports or an equal phase and amplitude power divider with an extra line
length on one of the two ports. The hybrid power divider feed produces an antenna
with a wide impedance and axial ratio bandwidth. The hybrid power divider has two
inputs that provide ports for both RHC and LHC polarizations. The signals reflected
from the two equal-length dipoles when fed from one port of the hybrid reflect into
the second port due to the phasing in the hybrid coupler. When measuring at one port
of the hybrid, the impedance bandwidth is quite broad because the reflected power is
dissipated in the load on the other port. This dissipated power lowers the efficiency
of the antenna, a hidden loss unless you measure the coupling between the inputs of
the hybrid. The second configuration, using the extra line length, produces an antenna
with a narrowed axial ratio bandwidth and a wider impedance bandwidth compared to
a single dipole. The extra 180° round-trip total signal path in one arm causes the equal
reflections to cancel. Figure 5-12 gives the circularly polarized pattern from a pair of
crossed dipoles over a ground plane with a perfect feed. The E-plane dipole null limits
the angular range of good circular polarization. We improve the circular polarization
by raising the dipoles a little and tilting them down to widen the E-plane beamwidth.
Figure 5-12 shows the pattern for the tilted dipole pair and illustrates the improved
cross polarization and the wider beamwidth. The placement on a finite ground plane
complicates this result somewhat and will require extra design effort.

Turnstile feeding exploits the impedance properties of the dipole to shift the relative
phase between two different dipoles when shunt connected to the same port. When
we shorten a dipole below resonance, its impedance is capacitive and its current has
positive phase relative to the resonant-length dipole, while the lengthened dipole has
an inductive reactance and a negatively phased current. We determine the lengths of
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FIGURE 5-12 Crossed dipoles fed for circular polarization: (a) A/4 height and 0° tilt; (b) 0.3
height and 30° tilt.

the two dipoles by a perturbation technique using the Q of the resonant circuit of the
dipole. Q is related to the VSWR bandwidth:

_ VSWR -1 0 VSWR — 1 (5-10)
~ 0JVSWR ~ BW+/VSWR

We derive the lengths of the two dipoles in terms of the resonant (zero reactance)-length
dipole, Ly:

Ly / 1
L,=—— L,=Ly |1+ — RHC polarization (5-11)
X T+ l/Q y 0 Q p

A dipole of 0.014A diameter located 0.3) above a ground plane and tilted down 30° has
a resonant length of 0.449A. The 2:1 VSWR bandwidth for 70 2 is 18.3% or a Q of
3.863 by using Eq. (5-10). When we insert this Q in Eq. (5-11), we calculate the two
lengths for a turnstile design: L, = 0.400A and L, = 0.504A for RHC polarization.
The +x and +y poles are fed from the same port. Figure 5-13 plots the Smith chart of
this design. The trace on a Smith chart rotates clockwise for increasing frequency. The
cusp in the trace is the frequency with the best axial ratio, which did not occur at the
frequency of best match. Nevertheless, the 2: 1 VSWR bandwidth of the antenna has
increased to 41.5% because the combined reactance of the two dipoles cancels over a
large frequency range. At center frequency the pattern is similar to Figure 5-12 except
that the patterns in the two planes have slightly different beamwidths due to the dipole
lengths. When the frequency shifts off center, the axial ratio degrades. The axial ratio
bandwidth is far less than the impedance bandwidth, and the design gives a 16.4%
6-dB axial ratio bandwidth. An axial ratio of 6dB produces 0.5-dB polarization loss
similar to the 0.5 dB reflected power loss of 2: 1 VSWR. This illustrates the importance
of considering not only the impedance bandwidth but also the pattern characteristics
over the frequency band.

We can increase the beamwidth of the turnstile dipole located over a ground plane by
adding a notched cone under it. Figure 5-14 illustrates the arrangement of the slightly
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FIGURE 5-13 Smith chart response of a turnstile dipole pair L, = 0.4001 and L, = 0.5041
mounted 0.30A over a ground plane with 30° tilt.

FIGURE 5-14 Turnstile dipole mounted over a notched cone on a finite circular ground plane
with radial line chokes to reduce the backlobe.

less than A/4-long notches in a 45° cone with the turnstile dipoles located about A/4
above the ground plane. A split-tube coaxial balun feeds the two dipoles sized as a
turnstile with dipoles of longer and shorter length. The upper feed jumper excites RHC
radiation. The dipoles excite magnetic currents in the slots that radiate a broad pattern
to fill in the E-plane nulls of the dipoles. On an infinite ground plane the horizontal
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FIGURE 5-15 Pattern of a turnstile dipole mounted over a notched cone with a 0.75A ground
plane and two radial chokes.

polarization must vanish along the ground plane, and the RHC and LHC components
would be equal at 90° similar to the pattern shown in Figure 5-12. By using a finite-
size ground plane, the horizontal component does not vanish, and a wide beamwidth is
obtained with circular polarization at 90° as shown in Figure 5-15, which uses a 0.75-
diameter ground plane and 0.5A-base-diameter cone. To reduce the backlobe below the
ground plane, two short-circuited radial transmission line chokes were placed around
the edge to form a soft surface. We size the inner radius so that the transmission line
produces an open-circuit impedance at the outer rim that reduces the edge diffraction
and the backlobe [6, p. 88]. From a PO perspective the radial line choke is a slot that
supports a magnetic current loop. This example illustrates that slots or notches can be
used to shape the patterns of small antennas.

5-7 SUPER TURNSTILE OR BATWING ANTENNA [7]

The super turnstile or batwing antenna was developed for TV transmitter antennas.
The antenna combines a slot with a dipole batwing to produce an antenna with a wide
impedance bandwidth. Figure 5-16 shows the normal configuration, with four wings
placed around a central support metal mast. Each wing connects to the mast at the top
and bottom with a metal-to-metal connection. The inner vertical rod and the support






236 DIPOLES, SLOTS, AND LOOPS

mast form a two-line slot fed by a jumper located at the center of each wing. To
produce an omnidirectional pattern about the mast, a feed power divider located inside
the mast phases the inputs for circular polarization (0°, 90°, 180°, 270°). The antenna
radiates horizontal polarization in the horizontal plane but radiates cross-polarization
that increases with elevation (depression) angle as shown in Figure 5-17. A four-wing
antenna produces a horizontal plane pattern ripple of about 1.5 dB. Adding more wing
antennas around a larger central mast reduces the ripple.

The extraordinary characteristic of the antenna is its impedance bandwidth. Figure
5-18 gives the return loss frequency response for a wire frame antenna. The 1.1:1
VSWR bandwidth is about 35%; if adjusted to 1.25:1 VSWR, the antenna has a 51%
bandwidth. You make small adjustments to the spacing between the mast and the inner
rod to tune the VSWR. Table 5-4 lists the parameters of batwing antennas with both
wire frame and solid panel wings. The solid panels lower the input impedance to 75 2
from the 100 2 of the wire frame antenna. Using an antenna with only two wings
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FIGURE 5-18 Super turnstile wire frame antenna return-loss response adjusted for 1.1:1 and
1.25:1 VSWR.

TABLE 5-4 Dimensions of a Super Turnstile
Antenna in Wavelengths for Four Wings Center-Fed
for Circular Polarization

Parameter Wire Frame Solid Wing
Impedance (£2) 100 75

Height 0.637 0.637
Wing upper 0.2254 0.229
Wing middle 0.0830 0.0847
Gap 0.0169 0.0216
Rod diameter 0.0508

Mast diameter 0.0847 0.0847




CORNER REFLECTOR 237

changes the input impedance from the value for an antenna with four wings because
the close coupling between the wings alters the impedance. It depends on the feeding
mode. This holds for any antenna with close coupling: for example, a spiral antenna.
You must feed it in the operating mode to measure the correct input impedance. The
transmitter antenna will consist of a number of these antennas stacked vertically to
produce a narrow pattern directed at the horizon.

5-8 CORNER REFLECTOR [8, p. 328]

The usual corner reflector (Figure 5-19) has a dipole located between two flat plates
that limit directions of radiation. The angle between the reflectors can be any value,
but 90° seems to be the most effective. On paper, decreased angles give better results,
but only marginally. We could consider the flat plate as a limiting case. The tangential
electric fields must vanish at the surface of the flat plates. We discover a greater
restriction, since the fields can only decrease gradually in the limited space between
the ground planes and the dipole. Most of the power is concentrated in lower-order
spherical modes. In the limit of zero vertex distance, the single mode possible restricts
the beamwidth to 45° in the H-plane.

We analyze the 90° corner reflector as an array by using the three images of the
dipole in the ground planes (Figure 5-19) plus the real dipole. The array factor of the
array of dipole and images is
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FIGURE 5-19 A 90° corner reflector.
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In the H-plane, ¢ = 90° and we evaluate terms to get
4[cos(kd cos ) — cos(kd sin )]
where d is the distance from the vertex to the dipole and 6 is the H-plane pattern
angle from the axis. We must multiply this by the pattern of the dipole to obtain
the radiation intensity. We consider only the H-plane, where the maximum radiation
. n [1p] 2
U = 4[cos(kd cos0) — cos(kd sin6)] )

intensity is found from Eq. (5-9):
kL\*
1 —cos— (5-12)
) 2

where 7 is the impedance of free space, Iy the dipole current, and L the dipole length.
The radiated power of the single dipole is

P = |Io)*[R11 + Ri2(2d) — 2R12(V2 d)] (5-13)

where Rj; is the self-resistance of the dipole and Ri,(x) is the mutual resistance
function between the dipole and its images. The directivity is found from

4nU (0)

directivity(0) =
irectivity (6) P

(5-14)

We combine Egs. (5-12) and (5-13) into Eq. (5-14) to compute directivity of the 90°
corner reflector with infinite sides:
4n[1 — cos(kL/2)1*[cos(kd cos @) — cos(kd sin6)]?

directivity(0) =
Ri1 + Ri2(2d) — 2R 12 (V2 d)

(5-15)

Table 5-5 gives the directivity, beamwidth, and impedance of a 90° corner reflector fed
from a dipole 0.421 long and 0.02X in diameter. We must shorten the dipole further
than a free-space dipole length at resonance to compensate for the mutual coupling
between dipoles. Directivity increases as the vertex distance decreases, but the effects
of superdirectivity cause the efficiency and gain to fall as the vertex is approached.
The antenna has a 50-Q2 input impedance for d = 0.37A. This point shifts when we
increase the dipole’s diameter to increase its bandwidth.

Kraus gives the following guidelines for the size of the sides. Each plate should
be at least twice the length of the dipole-to-vertex distance, and the plate height (the
dipole direction) should be at least 0.6A. To evaluate those guidelines, a GTD analysis
was performed on various combinations (Table 5-6) with d = 0.371. The H-plane
beamwidth decreases with an increase in plate length. After about 1.5A sides, the
H-plane beamwidth fluctuates about 45° as the sides increase. Even with 5\ sides
the beamwidth is below 45°. The E-plane beamwidth fluctuates with the plate height.
The directivity was estimated from the beamwidths. In one case—1.5A sides and 1.5A
high—the estimated directivity exceeds the directivity of the infinite-side case. The
edge diffractions add to the reflected and direct radiation of the rest of the antenna.

Refer to Section 2-4.2 for an example using PO to analyze a corner reflector. Similar
to infinite plate analysis, the reaction of the image dipoles in the finite plates can be
used to find the input impedance and gain of the antenna. When we analyze the corner
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TABLE 5-5 Characteristics of a 90° Corner
Reflector with Infinite Sides and 0.42) Dipole

Vertex Directivity Beamwidth Input Impedance
Distance (1) (dB) (deg) ()
0.30 12.0 44.7 29.1 —jl1.1
0.32 12.0 44.6 349+ j0.4
0.34 11.9 44.5 409+ j1.1
0.36 11.9 443 47.0+ j0.8
0.37 11.9 442 50.0+ ;0.3
0.38 11.8 44.1 53.0— ;0.5
0.40 11.8 43.9 58.8 — j2.8
0.42 11.7 43.6 64.1 — j6.0
0.44 11.7 433 68.8 — j10.0
0.46 11.6 429 72.7— j14.9
0.48 11.5 42.4 75.7 — j20.3
0.50 11.4 41.8 77.7 — j26.2
0.52 11.4 41.1 78.6 — j32.2
0.54 11.3 40.2 78.4 — j38.4
0.56 11.2 39.2 77.0 — j44.3
0.58 11.1 38.1 74.6 — j49.8
0.60 10.9 36.8 71.3 — j54.8

TABLE 5-6 Results of a GTD Analysis of a 90° Corner Reflector with Finite Sides and
Vertex Distance 0.37A

Side Plate Beamwidth F/B Estimated
Length (1) Height (1) E-Plane H-Plane (dB) Directivity (dB)
0.75 0.75 70.4 97.4 18.4 7.7
1.00 0.75 73.6 72.4 17.3 8.8
1.50 0.75 72.6 50.8 18.2 10.0
0.75 1.00 60.2 91.6 23.4 8.5
1.00 1.00 61.0 62.8 22.7 10.1
1.50 1.00 58.5 46.0 23.8 114
0.75 1.50 53.4 81.6 34.0 9.3
1.00 1.50 51.6 60.0 39.0 11.0
1.50 1.50 48.2 42.6 46.3 12.6
5.00 5.00 68.8 43.4 63.5 10.8

reflector using GTD, the method does not determine input impedance and gain must
be estimated from the patterns. We can use the method of moments to analyze the
corner reflector. One preferred construction method is to use rods for the reflector so
that the antenna has minimum wind loading. Figure 5-20 illustrates a corner reflector
made with only six rods on each side. Figure 5-21 gives the pattern of this antenna
from a moment method calculation. This small antenna produces excellent results.
We can use the angle of the sides as a design parameter. A geometric optics analysis
that uses images restricts the angle, but nothing stops the antenna from working for
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TABLE 5-7 Corner Reflector with Varying Angle H -Plane 0.91-Wide Plates Connected
to a 0.2A Central Plate, 1A E-Plane Width, Dipole 0.31 Above the Central Plate

Side Beamwidth Gain F/B | Side Beamwidth Gain  F/B
Angle E-Plane H-Plane (dB) (dB) | Angle E-Plane H-Plane (dB) (dB)
60 58.1 59.4 9.1 217 15 59.2 65.9 9.5 19.3
55 57.1 56.0 9.9 226 10 61.6 83.3 8.7 26.3
50 56.3 52.3 10.5  23.0 5 64.7 99.2 7.8 25.1
45 55.8 49.1 10.8 234 0 67.8 108.6 7.5 23.6
40 55.4 46.8 1.1 228 -5 70.2 117.0 7.2 22.0
35 55.4 45.5 112 243 —10 71.5 125.8 6.9 16.5
30 55.6 45.6 11.0 249 —15 71.8 135 6.6 19.0
25 56.2 479 107 255 -20 71.7 143.8 6.3 17.8
20 57.4 53.7 102 203 =25 71.8 152.2 5.4 16.1

Dipole
(0)

Side Plate
Hinge

0.2x

Center
Plate

FIGURE 5-22 Corner reflector with variable-angle side plates and a center flat plate.

arbitrary side angles. It is convenient to have a small plate between the tilted sides for
the mounting brackets, and these side plates could be mounted on hinges and rotated
to vary the H-plane beamwidth. Table 5-7 lists the parameters of a corner reflector
11 along the E-plane, a central plate 0.2A4 wide in the H-plane, and sides 0.91 long
where the side angle is varied. The dipole is located 0.31 above the central plate.
We measure the side plate angle from the plane containing the small central ground
plane; zero corresponds to a flat plane ground plane and 45° the usual corner reflector.
Negative side-plate angle means that the side plates are tilted behind the central plate
away from the dipole. Figure 5-22 illustrates the H-plane cross section of this corner
reflector with 30° side plates.

We should not design corner reflectors with large sides since the gain is limited. The
gain of paraboloid reflectors of the same size soon exceeds that of a corner reflector.
A 2A-diameter paraboloid reflector at 50% efficiency has a gain of 13 dB, and its gain
exceeds that of a corner reflector. Any corner reflector with a vertex angle given by
180°/N, where N is an integer, can be analyzed by the method of images. Corner
reflectors with N greater than 2 have only marginally higher gains. The 90° corner
reflector gives the best result for a given amount of material. Elkamchouchi [9] adds
a cylindrical surface between the plates centered on the vertex. This surface adds
another set of images within the cylinder. The images increase the gain by about 2dB
and decrease the frequency dependence of the impedance.



242 DIPOLES, SLOTS, AND LOOPS

SO,
", /Iﬂl !\\R’
TR

'
|
i

R\

FIGURE 5-23 A A/4 monopole located on 1A-, 2X-, and 10A-diameter disk ground planes.

5-9 MONOPOLE

A monopole consists of a single conductor fed out of a ground plane from the center
conductor of a coax. When we include its image (Figure 5-6), the monopole equates
to a dipole for analysis. The fields vanish below the ground plane and restricting the
fields to the upper hemisphere doubles the gain over a dipole, since only half the input
power of the dipole is needed to produce the same field strength.

The input impedance decreases to half that of the equivalent dipole. We can form
the image of the voltage source feeding the monopole in the ground plane. The voltage
across the input of the equivalent dipole is twice that of the monopole to produce the
same current. Therefore, the impedance of the monopole is half the impedance of
the dipole.

The large value of edge diffraction greatly limits the F/B ratio of a monopole when
it is placed on a finite ground plane. Figure 5-23 shows the pattern of a monopole when
placed on 1A-, 2A-, and 10A-diameter circular ground planes. The back radiation can be
reduced by placing the monopole over a ground plane with circular corrugations that
forms a soft surface at the edge when the corrugations are slightly deeper than A/4 [10].
When the corrugations are less than A/4, the ground plane can support surface waves.

5-10 SLEEVE ANTENNA [8, p. 422; 11, Chap. 5; 12; 13, p. 278]

A sleeve around the monopole (Figure 5-24) moves the virtual antenna feed up the
monopole. The bandwidth increases because the current at the feed point remains nearly
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FIGURE 5-24 Sleeve monopole and current distributions.

constant over a wide band. Currents at the input for the case when the monopole is
a quarter-wavelength long and when it is a half-wavelength long are about the same
(Figure 5-24). The input resistance remains constant as the frequency changes.

The sleeve shields possible radiation from the internal currents while the currents on
the outside of the sleeve radiate. The pattern changes little from that of an unshielded
monopole. The internal structure is available as a series-matching stub and a trans-
former to broadband the antenna. Design consists of adjusting the parts until a suitable
compromise input impedance match is achieved over the band.

Dipole sleeve antennas (Figure 5-25) require symmetrical sleeves on the arms to
maintain the symmetry of the currents. It is equivalent to feeding the antenna in two
places. The balun is made an integral part of the base. In both antennas, strips or rods
can replace the total coaxial sleeve [14]. The currents on the rods cancel the radiation
from the currents on the internal feeder. Figure 5-26 illustrates an open-sleeve dipole
using two rods designed to be mounted over a ground plane. The antenna is fed from
a folded balun that consists of a grounded vertical coax with one pole connected to the
outer shield and a matching tube connected to the second pole. The center conductor
jumps across the gap to the second pole. Following are the design dimensions in
wavelengths normalized to the lower-frequency band edge:

Dipole length 0.385  Dipole diameter 0.0214
Sleeve length 0.2164 Sleeve diameter 0.0214
Dipole-to-sleeve spacing 0.0381 Dipole height above ground 0.1644
Input taper 0.056

Figure 5-27 plots the return-loss response of the antenna for various configurations
and models of the antenna. The dipole without the sleeves has its best return loss over
a narrow band centered at a normalized frequency of 1.05. The sleeves have little effect
on this response at the low-frequency end. Adding sleeves produces a second resonance,
which combines with the lower one to produce a broad bandwidth. An initial method of
moments analysis used constant-diameter rods for the antenna, and Figure 5-27 shows
the poor impedance match response of the antenna. A key element of the experimental
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FIGURE 5-26 Open-sleeve dipole with conical input taper.
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(b) open sleeve antenna; (c) open sleeve antenna with tapered input; (d) open sleeve antenna
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antenna is the tapered input. Adding this feature to the model produced the improved
broad response of the experimental antenna. The constant-diameter model response
shows a notable capacitive term on a Smith chart, and the tapered input produced
the necessary inductance to reduce this effect. If the antenna is located in free space,
the impedance response improves as shown. Figure 5-27 points out the importance of
analyzing an antenna in its operating environment. The dot-dashed curve illustrates the
response when the antenna was mounted over a one-wavelength-square ground plane.
The finite ground plane produces a small but noticeable change in the input impedance.
The effects of small changes in the analytical model warn us that we cannot expect
antennas to match their models exactly and that small mechanical details can be used
to improve performance.

An open-sleeve antenna can be made using a wire cage. Since the diameters of the
dipole and sleeve rods are large, the weight can be reduced by using a circular array
of wires for each conductor. The effective diameter of the cage, d.g, is given as

ndo\ /" dy 1 (desr\"
dest =d | — — = — 5-16
et ( 7 ) or —=-\7 (5-16)

The diameter of the individual wires is dy, the cage diameter is d, and »n is the number
of wires.

5-11 CAVITY-MOUNTED DIPOLE ANTENNA

A dipole can be placed in a cup, and the assembly can be flush-mounted in a ground
plane. The antenna shown in Figure 5-28 has disk sleeves located above and below the
dipoles to stretch the bandwidth over a 1.8 : 1 range [15]. Following are the dimensions
normalized to the dipole length:

=2.57 =0.070

= 0.505

=0.68 =0.40

NN
SNQN| Y

The operating range is 0.416A < L < (0.74\. The antenna cavity ranged from 0.28A
to 0.50A deep and can no longer be considered thin. The cup antenna has a nearly
constant gain (£0.5dB) of 10.5dB over the band. Mounting the antenna in a cavity
opens up new possibilities, because extra parameters are added to the design. At the
low-frequency end, the cavity diameter is 1.07X, which grows to 1.90X at the high end.
We can use a dipole in a cup as a reflector feed. Excellent pattern and impedance
response is obtained with the dipole mounted in a truncated cone cup with a 0.88X aper-
ture diameter, a 0.57A-diameter base, and a 0.441 depth [16, pp. 106—108]. The dipole
is foreshortened to 0.418\ for an element diameter of 0.0131 and mounted 0.217A
above the base to achieve a 21% 2:1 VSWR bandwidth for a single element. When
we use a cross-polarized pair fed from a hybrid coupler to radiate CP, the impedance
match at the input port improves. The signals reflected from the two dipoles add in
phase at the isolated port and cancel at the input port. The load dissipates the reflected
power, and the antenna through the hybrid presents an excellent impedance match.
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FIGURE 5-29 Circular polarization response of a crossed dipole mounted 0.217) above the
bottom of a truncated cone 0.441 deep with a 0.88XA aperture and a 0.57A base.
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TABLE 5-8 Illumination Losses When Pattern of
Figure 5-29 Feeds a Paraboloidal Reflector

Loss (dB)
f/D Average Maximum
0.36 1.69 1.74
0.38 1.60 1.66
0.40 1.54 1.65
0.42 1.50 1.65
0.44 1.49 1.68
0.46 1.50 1.72
0.48 1.52 1.77
0.50 1.55 1.83
0.52 1.60 1.91

Figure 5-29 plots its pattern when excited for CP. The cross-polarization is about
30dB below the peak co-polarization response over the entire 10-dB beamwidth cone.
It has the following illumination losses when the antenna is used as a paraboloidal
reflector feed (see Section 8-2); for f/D = 0.44 and averaged over the 21% bandwidth:

spillover loss = 0.72 dB amplitude taper loss = 0.65dB
cross-polarization loss = 0.12 dB

Table 5-8 demonstrates the broad optimum reflector f/D for a phase center 0.02A
inside the aperture plane, where we position it at the reflector focus.

5-12  FOLDED DIPOLE

A half-wavelength folded dipole increases the input impedance of a normal dipole
fourfold while radiating the pattern of a single dipole. With the two elements closely
coupled, we analyze the antenna using even and odd modes (Figure 5-30). The even
mode divides the antenna into separate dipoles because the magnetic wall halfway
between them is a virtual open circuit. The input current to the even mode becomes

\%
L=
2Zin+ Z1n)
|—————— /2
v/2 v/2 v
) MY g
Magnetic ~—  Wall | Electric " wall S
N\ AN
- -\
v/2 v/2

FIGURE 5-30 Folded dipole analysis modes.
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where Z; is the self-impedance of one of the dipoles and Z;, is the mutual impedance
between the closely coupled dipoles. The odd mode reduces the antenna to the series
connection of two nonradiating A/4 stubs:

Vv
l,=————
jZotan(kL/2)

where Zj is the characteristic impedance between the two rods. The input current is
the sum of the even- and odd-mode currents. Near L = A/2, the odd-mode current is
quite small because its input impedance is an open circuit, and the input impedance is
then determined by the even mode only:

\%
Zin=—=2(Z11+ Z12)
I,

For closely coupled lines, Z;; = Z;, and the input impedance becomes Z;, = 47,
where Z;; is the self-impedance of the dipole. Higher input impedance levels can be
obtained by adding more elements.

A second method of altering the step ratio from 4 is to use unequal feed and shorted
element diameters [17,18]. Given a driven element radius a;, parasitic element radius
ap, and center-to-center spacing b, Hansen [18] gives a convenient formula for the
step-up ratio (1 + y2):

cosh™'[(v2 — u? + 1)/2v]
y = — where u =ay/a; and v = b/a, 5-17)
cosh™ ' [(v? + u? — 1) /2uv]

5-13 SHUNT FEEDING [19, p. 118]

Shunt feeding grows out of the folded dipole. The T-match (Figure 5-31) starts as a
folded dipole when the taps are at the ends. As the taps move toward the center, the
impedance of the dipole dominates at first, since the admittance of the shunt stub in the
odd mode is small and the input impedance is capacitive. At some point, as the taps
move toward the center, the inductive admittance of the stub will cancel the capacitive
admittance of the dipole and produce antiresonance with its high input resistance. The
location and magnitude of this peak resistance depends on the diameters of the rods
in the T-match section and the diameter of the radiator. The input resistance decreases
as we continue to move the tap point toward the center after the feed location passes
the antiresonance point. The input impedance is inductive and match is achieved by
using symmetrical series capacitors. The T-match is fed from a balanced line.

The center short on the dipole allows the direct connection of the dipole to ground.
Direct connection of broadcast towers (monopoles) to ground gives some lightning
protection because the transmitter is capacitively connected to the tower. Shunt feeding
with a T-match enables solid conductors, such as the skin of an aircraft, to be excited
as a dipole. Horizontal shunt-fed dipoles can be connected directly to vertical towers
with a metal-to-metal connection to increase the strength of the antenna to withstand
adverse weather conditions.

A gamma match (Figure 5-31) can be fed from an unbalanced coax line. The shield
of the coax connects to the shorted center of the dipole while the center conductor
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FIGURE 5-31 Shunt-fed dipoles.

taps into one side of the solid rod. Moving the tap away from the center increases
the input resistance. The inductive reactance is series-tuned with a capacitor. Both of
these connections reduce the bandwidth of the antenna as the input impedance is raised
because the combination of the series capacitor and the shunt inductive stub increases
the stored energy and Q of the antenna.

5-14 DISCONE ANTENNA

The discone antenna (Figure 5-32) is a modification of the dipole where the upper pole
becomes a disk and the lower pole turns into a cone. We feed the antenna by locating
a coax in the center of the cone and by connecting its outer shield to the lower cone at
its top while we extend the coax center conductor and connect it to the disk. We obtain
an antenna with a wide impedance bandwidth and a dipolelike pattern. As frequency
increases the pattern peak moves toward the cone and gives a downward-pointing
pattern. Figure 5-33 shows the pattern of a discone antenna at the design frequency
and at two, three, and four times this frequency. The antenna produces less useful
patterns as frequency increases. The antenna that gives the patterns in Figure 5-33 has
a VSWR less than 3:1 from 1 to 10 times the design frequency. The cone upper
diameter determines the high-frequency end of good impedance match. Typical slant
length dimensions versus cone angle are as follows [20, pp. 128—130]:

Total Cone Angle ‘ 25 35 60 70 90

Slant Length () ‘0.318 0.290 0.285 0.305 0.335

The upper disk diameter equals 0.7 times the lower cone diameter. The spacing
between the top of the cone and the upper disk equals 0.3 times the diameter of the
upper cone. The diameter of the upper cone determines the upper frequency limit, but
practice shows that the antenna patterns are good only over a 4:1 to 4.5:1 frequency
range. The impedance bandwidth is much wider than the pattern bandwidth. To reduce
weight and wind loading, the cone and disk can be made from rods, with a typical
implementation having at least eight.



FIGURE 5-32 Discone antenna with coaxial feed with a center conductor connected to the

upper disk and a shield connected to the lower cone

FIGURE 5-33 Elevation pattern of a 60° discone antenna al

3, and 4.
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5-15 BALUNS [21; 22, pp. 167-180]

A balun properly connects a balanced transmission line to an unbalanced transmission
line. Simple arguments about impedances to the balanced and unbalanced modes of
the three-wire transmission lines explain its operation. Considering one of the lines of
a transmission line as ground misleads us. A ground plane under the transmission-line
feeder becomes the third conductor of a three-wire line. Currents flowing in the ground
plane can unbalance the currents in the feeder. A balanced three-wire transmission-
line mode carries equal and opposite currents in the feeder lines. The capacitances
per unit length of the two lines to ground are the same. Coax is an example of an
unbalanced line structure (Figure 5-34). The inner conductor has no direct capacitance
to ground. The two-wire line shown in Figure 5-34 is a balanced line having equal
capacitances to ground, but we must judge a balanced line by the currents, not just the
physical structure.

Before we analyze baluns, we must consider the fundamental modes of a three-
wire transmission line. Figure 5-35 shows circuit representations of the modes without
showing the ground conductor. Equal loads terminate ports 3 and 4. The even mode
applies equal voltages on ports 1 and 2 and forms a magnetic wall between the conduc-
tors where the magnetic field vanishes to produce a virtual open circuit. The unbalanced
mode—equal current directions—is associated with the even mode. Equal and oppo-
site voltages on ports 1 and 2 form the odd mode and set up an electric wall between
the conductors. The electric wall is a virtual short circuit. The odd mode excites equal
and opposite currents—balanced mode—on the two lines. When the loads on ports 3
and 4 are unequal, the modes separate according to the voltages, even and odd, or the
currents, unbalanced and balanced. Dipoles present loads between the lines and not
to ground.

Balanced line Unbalanced line

O O

iiiiii/iiiid/ R icddddddd

Ground Ground

FIGURE 5-34 Physically balanced and unbalanced transmission lines.
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FIGURE 5-35 Balanced and unbalanced modes on a three-wire transmission line.
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Unbalanced mode circuits radiate. Only closely spaced equal and opposite currents,
the balanced mode, cancel the far-field radiation from the currents on the feed lines.
The radiating feeder line adds radiation components to the antenna. These components
can radiate unwanted polarizations and redirect the beam peak of the antenna (squint).
In reception, the unwanted currents excited on the feeder by passing electromagnetic
waves reach the receiver terminals without a balun to block them. We analyze baluns
by using either transmitting or receiving antennas, depending on convenience, because
reciprocity applies to baluns as well as antennas.

We detect balance problems from pattern squint and cross polarization. An
impedance-measuring setup can detect some balance problems. Radiating unbalanced
currents cause changes in the impedance. The radiation shows when the impedance
changes as fingers are run over the coax line from the equipment. If we feed a dipole
from a coax without a balun, the current on the outer conductor splits between the dipole
conductor and the outside of the conductor. Patterns and impedance measurements
detect this current. Unbalanced currents on the arms of the dipole and feeder currents
cause pattern squint, but the cross-polarization radiated is usually a greater concern.

5-15.1 Folded Balun

A folded balun (Figure 5-36) allows the direct connection of a coax line to the dipole. A
dummy coax outer conductor is connected to the pole fed from the center conductor.
It runs alongside the feeder coax for A/4 and connects to ground. The other pole
connects directly to the shield of the feeder coax. The outer conductor of the coax and
the extra line are two lines in a three-wire line with ground. We analyze the structure
by using balanced (odd) and unbalanced (even) modes. Unbalanced-mode excitation
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FIGURE 5-36 Folded balun.
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FIGURE 5-37 Folded balun equivalent circuit (balanced mode).

at the dipole forms a magnetic wall through the ground connection between the two
coax shields. The circuit reduces to a single line with an open circuit at the ground
connection. The open circuit transforms through the quarter-wavelength line to a short
circuit at the dipole. Any unbalanced currents induced on the dipole or the coax outer
conductor are shorted at the input. Balanced-mode excitation at the dipole forms an
electric wall through the ground connection. The balanced-mode circuit of the two coax
shields is a A/4 short-circuited stub connected in shunt with the dipole (Figure 5-37).
We analyze the frequency response from Figure 5-37. The bandwidth of the balun,
although narrow, exceeds the bandwidth of the dipole. The Roberts balun [23] design
adds an open-circuited stub A/4 long inside the dummy coax of the folded balun. Instead
of connecting the center conductor of feeding coax to the outer shield, we connect it
to the open-circuited stub. The equivalent circuit for the balanced mode includes the
short-circuited stub of the folded balun plus the open-circuited stub. The two reactances
shift in opposite directions as frequency changes and produce a dual resonance we see
as a loop on the Smith chart plot of impedance. The frequency bandwidth increases to
almost 3: 1, a more suitable choice for wide-bandwidth antennas.

5-15.2 Sleeve or Bazooka Baluns

An outer jacket shields the outer conductor of the coax feeder in a sleeve balun
(Figure 5-38). The sleeve and outer conductor of the coax form a series stub between
the coax feeder and ground when the cup is short circuited to the coax outer conductor.
The A/4 stub presents a high impedance to the unbalanced currents at the top of the cup
(Figure 5-39). A second sleeve below the first one and directed away from the dipole
further prevents currents excited on the coax from reaching the input. When the fre-
quency shifts, the connection to ground through the sleeve unbalances the transmission
line. This balun is inherently narrowband.

Adding a stub to the center conductor (Figure 5-40) increases the bandwidth because
the stubs track each other when the frequency changes. Figure 5-39 demonstrates the
circuit diagrams of the two types of sleeve baluns. The type II sleeve balun has match-
ing series stubs on the outputs. The lines remain balanced at all frequencies, but the
stubs limit the bandwidth of efficient operation. Marchand [21] adds an open-circuited
A/4 stub inside the matching type II extra shorted stub of the sleeve balun and connects
it to the coax center conductor in the same manner as the Roberts balun. The Roberts
balun is a folded balun version of the Marchand compensated sleeve balun.

The coaxial dipole is a variation of the sleeve or bazooka balun. We rotate the
right pole in Figure 5-38 until it is vertical and remove the left pole. We turn over the
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FIGURE 5-38 Sleeve or bazooka balun.

Coax Inner Conductor

L I e
Unbalanced Inside of Outer Conductor I Balanced line
C ‘}__:—..

|
E o, B o
Zs Zs !
H LZZZZZH
Outside of Outer Conductor "'— M4 —>| : |<~— M4 ——b-{
H -
Sleeve Type Il Only

Z
LSS TSI LIS TS LT LTSS T T 7 77 7777777777777
FIGURE 5-39 Schematic of types I and II sleeve or bazooka baluns.
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FIGURE 5-40 Type II sleeve balun.

sleeve and connect the short-circuit end to the outer conductor of the coax. The sleeve
becomes the second pole of the dipole. The short-circuited stub at the bottom of the
dipole between the outer conductor of the coax and sleeve transforms to an open-circuit
impedance at the end of the lower pole. This prevents current flow farther down the
coax. Some references call this a sleeve dipole, which should not be confused with the



BALUNS 255

sleeve dipole used to increase the impedance bandwidth. The coaxial dipole has the
inherently narrow bandwidth of the bazooka balun, but is a convenient construction.

5-15.3 Split Coax Balun [24, p. 245]

A split coax balun allows the connection of both arms of a dipole to the outer shield
of the coax that maintains symmetry to the dipole arms. Its rigidity helps to overcome
vibration problems. Slots cut in the outer shield (Figure 5-41) enable the coax line
to support two modes and make it equivalent to a three-wire line. A shorting pin
excites the TE;; mode in the slotted coax (Figure 5-42) to feed the dipole in the
balanced mode.

Analysis of a split coax balun is similar to that of a folded balun. The ends of the
slots are equivalent to the ground connection of the two coax shields of the folded
balun. A virtual open circuit forms at the ends of the slots in the unbalanced (even)
mode. It transforms to a short circuit at the dipole and shorts the unbalanced mode
at the input. The virtual short circuit at the end of the slots in the balanced mode
transforms to an open circuit at the input. Figure 5-37 gives its circuit diagram.

Symmetry improves the performance of a split coax balun over a folded balun. The
shorting pin is used only to excite the TE;; mode to feed the dipole arms. The extra
wire length of the center conductor jumper of the folded balun introduces phase shift
to the second arm and squints the beam. For that reason, the split coax balun is a
better high-frequency balun. The phase shift problem of the jumper also occurs with
the “infinite” balun of the log-periodic antenna.

Dipole Arm
Shorting
Pin
_______ e
_______ By
(e \
14 Slot
L) Dipole Arm

FIGURE 5-41 Split coax balun. (From [24], Fig. 8-5, © 1948 McGraw-Hill.)

TE11 Pin

5 RE

FIGURE 5-42 Coaxial transmission-line modes in a split coax balun. (From [24], Fig. 8-6, ©
1948 McGraw-Hill.)
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5-15.4 Half-Wavelength Balun

A half-wavelength balun (Figure 5-43) works by cancellation of the unbalanced-mode
currents at the input to the coax. The impedance transforms by a factor of 4 from
unbalanced- to balanced-mode ports. In the unbalanced (even) mode, equal voltages
are applied to the two output ports. When the voltage wave on the upper line propagates
through A/2, its phase changes by 180°. This signal cancels the signal connected directly
to the coax center conductor.

A load across a balanced-mode transmission line has a virtual short circuit halfway
through it. The load on each balanced-mode line is 2Z,, where Z; is the coax char-
acteristic impedance. The load on the end of the A/2-long line is transformed by the
transmission line to the identical impedance when it circles the entire Smith chart.
The two loads, each 2Z, are connected in shunt at the coax input and combine to
Zy. A balanced-mode impedance of 4Z transforms to Z, at the coax input. The A/2-
long cable can be rolled up for low frequencies. The balun transforms 300-€2 input
impedances of folded dipoles to 75 €2 by using RG-59 cable (75 2).

5-15.5 Candelabra Balun

A candelabra balun (Figure 5-44) transforms the unbalanced-mode impedance four-
fold to the balanced-mode port. The coax cables on the balanced-mode side connect
in series, whereas those on the unbalanced-mode side connect in parallel. We can
divide the balanced-mode impedance in two and connect each half to a 2Z,; impedance
transmission line. These lines then connect in shunt at the unbalanced-mode port. The
unbalanced-mode currents short out at the input to the 2Z, coax lines in the same man-
ner as does the folded balun. More lines can be stacked in series and higher-impedance
transformations obtained, but construction becomes more difficult.

5-15.6 Ferrite Core Baluns

Ferrite cores can be used to increase the load impedance to unbalanced-mode currents
and reduce them. At low frequencies (<100 MHz) ferrite has high permeability. As the
frequency increases, the permeability drops, but the losses to internal magnetic fields
increase. The increased inductance of transmission lines is used at low frequencies,
and the increased loss is used at high frequencies to inhibit currents.

Ferrite bazooka or sleeve balun ferrite cores, placed on the outside of a coax line
(Figure 5-45), increase the impedance to ground for currents on the outside of the

O

C
\ Balanced Z,; = 4

FIGURE 5-43 Half-wavelength balun.
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FIGURE 5-44 Candelabra balun.
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FIGURE 5-45 Ferrite core bazooka balun.

shield and inhibit unbalanced currents between the ground and the outer shield. The
ferrite balun can work over many decades. The ferrite material provides high impedance
through inductance at low frequencies. As the ferrite material impedance drops when
frequency increases, the transmission line approaches A/4 of the bazooka balun. Any
ferrite core balun is a compromise design between low-frequency response controlled
by the amount of ferrite and high-frequency response controlled by the length of
transmission line.

Bifilar wire windings on a ferrite core form the 1: 1 balun (Figure 5-46a). The bifilar
wire closely approximates 50- to 100-€2 characteristic impedance transmission lines.
This balun can work satisfactorily from 100kHz to 1 GHz. When there are balanced
currents in the windings, there is no net magnetic field in the ferrite. In the unbalanced
mode, the fields add in the core and give a high series impedance due to the high
inductance (low frequency) or high resistance (high frequency). The amplitude at port
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FIGURE 5-46 Bifilar wire ferrite core baluns: (a) type I; (b) type II.
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FIGURE 5-47 Ferrite core candelabra balun.

2 (Figure 5-46a) is lower than at port 1 because of the extra losses introduced in the
ground lead by the ferrite core. This can be corrected by adding an extra winding to
ground (Figure 5-46b), which produces a type II bazooka balun. The extra winding
balances the outputs by adding loss to port 1 without any increase in bandwidth due
to the ferrite loading.

5-15.7 Ferrite Candelabra Balun

We can make a parallel-to-series ferrite balun that transforms the unbalanced-mode
input impedance fourfold to the balanced-mode output (Figure 5-47). As in the coax
version, the characteristic impedance between the wires in the cores should be twice the
unbalanced-mode input impedance. Point 3 (Figure 5-47) is a virtual short. Connecting
it to ground sometimes helps the balance. Both windings can be wound on the same
core, such as a binocular core.

5-15.8 Transformer Balun

A transformer balun has no transmission-line equivalent; it is merely a transformer
(Figure 5-48). The balanced-mode output impedance is fourfold that of the input
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FIGURE 5-48 Ferrite transformer balun.

unbalanced mode. Wound with trifilar wire, the output has twice the number of turns
compared to the input, and each output line has the same impedance to ground through
the transformer. No transmission-line effects extend the upper band edge beyond the
transformer action of the windings and ferrite, but the transformer balun is a fine
low-frequency device. Use of No. 36 and 38 wires in ferrite core baluns limits the
power-handling capability of the baluns to receive-only levels. The ferrite bazooka
balun (Figure 5-45) carries the power in coax, which allows higher power levels.

5-15.9 Split Tapered Coax Balun [25]

A split tapered coax balun starts with inherently unbalanced coax. Moving toward
the balanced end, an outer conductor slot opens and exposes more and more of the
center conductor (Figure 5-49). At the point where the size of the outer conductor
is reduced to that of the inner conductor, we connect a balanced twin line to the
two conductors. The impedance must be raised from input to output, since the two-
wire line, spaced the radius of the coax, has higher impedance than the one at the
coax input. The balance depends on reducing the reflected wave in the transformer.
Any suitable tapered transformer, such as Dolph—Chebyshev or exponential, can be
used, and design return loss is the level of the unbalanced mode. The balun can be
constructed in microstrip. The ground plane tapers until it and the upper conductor are
the same size. This balun can operate over decades of bandwidth, since the tapered
transformer determines the bandwidth.

A = B = C r>D =t
—— =
[A L g Le-C L»D L>E

OXCRIES

A-A B-B c-C D-D E-E

FIGURE 5-49 Split tapered coax balun. (From [16], Fig. 1, © 1960 IEEE.)
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5-15.10 Natural Balun [26, p. 821]

A natural balun feeds the coax through a loop antenna to the feed point where the
outer shield is split and the center conductor jumps the gap to connect to the outer
shield of the coax. At this point the currents flow on to the outer shield and radiate. By
moving an equal distance along the coax until the two halves meet, we can connect the
feed coax and not have current flow down the outside. The currents flow in opposite
directions along the loop and cancel at the connection. From a circuit point of view,
the connection point is a virtual short circuit to the balanced mode similar to a folded
balun at its connection point. In a similar manner, on a folded dipole we can connect
the feed coax to the middle of the shorted dipole and form a natural balun.

We have not exhausted the number of balun designs. The “infinite” balun of log-
periodic antennas will be discussed as part of the construction of such antennas. When
a broad-beam antenna is designed, sometimes a little squint in the beam and a little
cross-polarization are acceptable and the antenna may be fed without a balun.

5-16 SMALL LOOP

In Section 2-1.2 we discuss the radiation from a small constant-current loop. For a
small loop the current is approximately constant and has the pattern of a short magnetic
dipole located along the axis of the loop. Similar to the short dipole, we calculate the
series resistance and radiation resistance to calculate efficiency. We increase efficiency
by adding closely coupled turns and ferrite rods to increase the magnetic field. A
multiturn loop with N turns and loaded with ferrite with an effective permeability pies
and area A has a radiation resistance:

2

A
Rloop = 320N2Meffn4ﬁ

The wire adds a series loss resistance R to the input resistance of the multiturn loop,
but it is proportional to N instead of N? and the wire surface resistance R, given the
wire conductivity o:
R (loop length)NR,
L= : .
perimeter of wire cross section

R — o
20

When we have a circular loop radius b and a wire diameter of 2a, we find a series
inductance from the loop:

) b
Lloop = UoMefrN bln ;

b
R; = —R;
a

The radiation efficiency of the loop is calculated by using the series-loss resistance and

the radiation resistance:
P, r Rloop

n =—
‘ Pi R100p+RL

Adding turns and ferrite material increases the radiation efficiency.
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We compute the mean effective permeability by integrating along the ferrite rod the
permeability distribution p.(x) of the core and dividing by its length [27, p. 6-20].
The following approximates its distribution for a core of length /:

te(x) = pes (1 + 0.106X — 0.988%2)
2|x|
l

X =

The factor u.; depends on the ferrite geometry. For a cylindrical rod with diameter D,
we calculate ., from

_ 0
T 1+ (u— D(D/D2(n(/D){0.5+ 0.7[1 — exp(—p x 10-)]} — 1)

l"LCS

For a rectangular cross section of height 2 and width w (w > h), we find ., from

_ 0
T 1+ (= D@wh/TDH(n B/ (w + )] — 1}

MCS
B =4-0732 [1 —exp (—5.5%)] —1.23exp(—p x 1073)

When the axis of the loop is along the z-axis, the effective height h is determined by
the area: .
h = — it 4k Asin06

The ferrite loop antenna finds use as a receiving antenna at low frequencies where the
sky noise is very high, and the added noise of the antenna due to poor efficiency has
little effect on the overall G/ T value.

5-17 ALFORD LOOP [28]

An Alford loop feeds two dipoles curved into a loop that radiates an omnidirectional
pattern with horizontal polarization when located horizontally over a ground plane.
Figure 5-50 shows a configuration fed from coax where it feeds two parallel-plate
transmission lines connected in shunt. The flat dipoles and the sides of the transmission
line are offset by a central substrate (not shown). The opposite direction of the dipoles
produces a 180° phase shift between them. The odd-mode feed produces a pattern
null along the coax axis that reduces current excitation on the outside of the coax
and eliminates the need for a balun. We space the loops so that the circumference is
approximately 1A and adjust the parallel-plate line impedance to transform the dipole
impedance to 100 2 where the two sides are connected in shunt.

The horizontal pattern improves when we place the Alford loop in a slotted cylin-
der [29]. Figure 5-51 illustrates the positioning of the loop in the slotted cylinder
when viewed from below before it is attached to a ground plane. The 0.38A-diameter
cylinder has four slots each 0.5A long with open-circuited ends. We cut an opening
about 0.2A along the circumference about 0.12A along the cylinder axis to create an
open circuit for the slot where the cylinder attaches to the ground plane. Of course,
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FIGURE 5-50 Alford loop fed by coax into a parallel-plate transmission line.

FIGURE 5-51 Alford loop feeding slotted cylinder viewed from below where connected to
ground plane.

the coax runs through the ground plate to its connector. We point the parallel-plate
transmission line halfway between two slots so that each curved dipole feeds two
slots. Figure 5-52 gives the typical pattern of the antenna on a ground plane. This
antenna illustrates another example of the interaction of dipoles and slots used to
improve patterns.
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FIGURE 5-52 Horizontally polarized pattern of Alford loop feeding slotted cylinder.

5-18 RESONANT LOQOP [19, p. 158; 30]

A folded dipole has a perimeter of one wavelength, and any other shaped loop will
resonate when its perimeter is near one wavelength. The sinusoidal current distribution
of the folded dipole remains on the loop. The folded dipole has a dipole pattern with
its null in the direction of the voltage across the feed. The loop retains this pattern
property when it is symmetrical about the feed point. The loop shape that opens in the
H-plane distorts the normal perfect-circle H-plane pattern of the dipole and gives 3-
to 4-dB peaks in the directions normal to the loop compared with the directions in the
plane of the loop. The E-plane null is filled in with a cross-polarized pattern at about
20dB below the beam peak.

Since the current distribution is sinusoidal on the loop, opposite the feed and halfway
around the loop perimeter is a virtual short-circuit point. The current reaches maximums
at the virtual short circuit and at the feed. We can expect a moderate input resistance
because the standing-wave current is high. A circular loop has an input resistance
of about 1302 when the loop is 1.08 wavelengths in perimeter. If the loop is a
parallelogram, the resonant input resistance depends on the angle between the wires at
the feed. The resistance starts at about 300 €2 for the folded dipole and decreases for
decreasing angles. At 120° between the lines, the resistance is about 250 2 and drops to
50 2 when the angle is 60°. Four common loop shapes are: (1) circle, (2) square (quad),
(3) parallelogram, and (4) triangle. Changes in the shape affect the input resistance at
resonance and, to a slight degree, the resonant perimeter. The Q of the antenna is about
the same as that of a half-wavelength dipole. The gain equals that of the one-wavelength
dipole, 3.8 dB.

Figure 5-53 illustrates a resonant loop used as a ground plane for a dipole spaced at
A/4 above it. Each square is 1/8 on a side with a center square with mounting holes
for the balun. The ground plane consists of two resonant loops, because the center
ring is eight squares around, while the outer ring has 16 squares for a 21 loop. For
this antenna each pole consists of two rods: one horizontal and one tilted at 30°. Two
versions of this antenna landed on Mars in 1976 [31]. Not only is the ground plane
extremely lightweight, but it gives an excellent F/B ratio for a ground plane only 1A
across. We can easily add a resonant ring to an antenna—whether a dipole or another
antenna—and expect an improvement.
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FIGURE 5-53 Combined 1A and 2X resonant loops ground plane for crossed dipoles using
MA/8-side squares.

5-19 QUADRIFILAR HELIX [32, 33]

A quadrifilar helix consists of two interwound resonant loops twisted into a helical
shape. Although the antenna can be made using two open U-shaped wires, the usual
implementation has two loops. The loop quadrifilar helix is resonant when each loop
has a perimeter slightly greater than one wavelength, similar to a planar resonant loop.
The feed produces a standing-wave current distribution that peaks at the feed and at
the center of the shorting wire that joins the two ends of the helix. Nulls in the current
distribution occur halfway along the helical section. The lower half of the antenna can
be removed at the null points to form a dual open U-shaped antenna. An antenna using
a half-turn in each of the four arms of the helix with a diameter of 0.174A and a height
of 0.243A produces a circularly polarized pattern with a 120° beamwidth when fed
from two equal-amplitude feeds phased in quadrature.

If we consider a single twisted loop oriented with the z-axis along the helix axis,
we discover the unique radiation characteristics by doing a MOM analysis of the wire
loop. The analysis shows equal and opposite currents located on the feed and shorting
line that reduces the radiation from the closely spaced straight sections. The currents
along the helical section have a progressive traveling-wave phasing except for the 180°
phase shift through the null. This traveling-wave current radiates circular polarization.

Consider a loop twisted into a right-hand helix. The loop radiates a pattern with
lobes along the +z- and —z-axes, both with left-hand circular polarization. If we rotate
the helix end to end, the helix remains right-hand and the problem has not changed.
Whether we feed the antenna at the top or bottom in the center of the straight wire, the
current distribution on the antenna is the same and the pattern has the same polarization.
When we feed both loops with phasing for left-hand circular polarization (x-axis 0°
and y-axis 90°) on the right-hand helix, the two left-hand circularly polarized lobes
from the two loops add along the z-axis, while the left-hand lobes along the —z-axis
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cancel because the feeding phases are for RHC along the —z-axis. Of course, we use
a left-hand helix and right-hand feeding phases for RHC polarization.

Figure 5-54 shows a left-hand half-turn quadrifilar helix that radiates RHC. Normal
practice uses a dual folded balun to feed the antenna, with the two ports connected to a
hybrid coupler to produce circular polarization. The balun short circuit is a disk located
A/4 from the feed through which all four coax cables pass. We solder the coax lines
to the disk to complete the folded balun structure. We add two upper jumper wires at
the feed points. We can use the balun structure to support the two helixes as shown
in Figure 5-54. A second construction uses self-supporting helixes fed at the lower
end by a dual balun. Out of band this antenna also suffers from poor efficiency even
though the antenna is well matched at the hybrid port, because the equal reflections
from the two loops are routed to the load on the hybrid coupler. Although mutual
coupling between the two twisted loops modifies the input impedance, we discover
that each individual loop has nearly the same impedance as the total antenna.

We can feed a quadrifilar helix from a turnstile feed if we use unequal perimeter
twisted loops to produce a phase difference caused by the impedance changes when the
loop is longer or shorter than a resonant length. A development similar to Section 5-6
gives us the dimensional changes of the loops required to produce a circularly polarized
pattern. For a half-turn helix the perimeter length determines the resonant frequency:

perimeter = /(2 - height)? + (7 - diameter)? + 2 - diameter (5-18)

By Section 5-6 the ratio of the two perimeters that will produce a circularly polarized
pattern is related to antenna bandwidth (Q). If we keep the same diameter (D) for both
helixes, we modify the heights (H):

VQH)? + (nD)? +2D | 1

+ — (5-19)

JCH)Y? + (=D2+2D  Q

FIGURE 5-54 Half-turn quadrifilar helix fed from two folded baluns.
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This allows the feed to be a split-tube balun when the two loops are joined to the same
coax balun located in the center. We split Eq. (5-19) in the same manner as Eq. (5-11)
to compute the two new heights:

JCHy)? + (D)2 42D
JEHY + D) +2p = Y& for RHC
T JTF1/0 of (5.20)

J@H)? + (nD)? +2D = [\/(2110)2 T (D) + 20] J1+1/0

A half-turn quadrifilar helix with diameter = 0.174A and height = 0.243A has a 3.2%
2:1 VSWR bandwidth. We determine antenna Q by using Eq. (5-10) to be equal
to 22.1. We use Eq. (5-18) to calculate the perimeter of the unmodified helix to be
1.079A. When we substitute the Q and the perimeter into Eq. (5-20), we can easily
solve for the two heights: H, = 0.2248) and H, = 0.2608A. This assumes that the
antenna has a left-hand helix for RHC polarization. When we make this antenna with
the correct dimensions, the measured Smith chart of the design will have a small loop
at the frequency with the least cross-polarization. The two shorted loops do not meet
at the point opposite the feed but pass over and under each other. We can design a
turnstile quadrifilar helix with the same height for the two loops by using Eq. (5-20)
to compute the two diameters.

5-20 CAVITY-BACKED SLOTS

A slot that radiates only on one side of the ground plane is the dual of a monopole.
As in the case of the monopole, restricting the radiation to above the ground plane
doubles the gain. The voltage across the slot determines the field strength. Since the
radiated power is only half that of the slot radiating on both sides and having the same
peak fields, the input impedance doubles. The already high slot impedance becomes
even higher. The cavity must present an open circuit at the slot, or its susceptance must
combine with the slot susceptance to resonate. Normally, it is a quarter-wavelength
deep. Since many cavities form a box, the waveguide mode determines the propagation
constant (wavelength) used to determine the depth.

5-21 STRIPLINE SERIES SLOTS

Stripline consists of a center strip equally spaced between two flat ground planes. It
supports a coaxial-type TEM-mode wave between the central strip and the two ground
planes. The ground plane currents match the currents flowing in the central strip. A
waveguide has axial currents that flow along the axis and transverse currents that flow
in the direction of the sidewalls. Any slots cut in the ground plane can only interrupt
axial currents and present series loads to the transmission line because the TEM wave
has no transverse currents. The load that a slot presents to the transmission line is a
parallel combination of a radiation conductance and an energy storage susceptance.
Low values of inductive reactance shunt power around the high resistance of short
slots. The inductance increases with increasing electrical length and supports higher
voltages across the slot radiation resistance. This increases the radiated power. The
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inductance increases to an antiresonance near A/2, where further increases in electrical
length decrease the capacitive reactance.

Oliner [34] gives an expression for slot conductance normalized to the stripline
characteristic impedance. When unnormalized, it becomes

8 7\ 2 7\ 2 N 4
8RN 0374 (YY) woaso(“ (5-21)
4572 \ A A A
where a’ is the length of the slot and e, is the dielectric constant of the stripline
boards. More complete expressions for full series admittance are available [35], but
near resonance Eq. (5-21) suffices.

Most striplines are etched on dielectric substrates. The dielectric fills the slot and
reduces the resonant length. The effective dielectric constant in the slot is [36]

, 28
"1+,

& (5-22)

Slot length determines the radiation conductance. Decreasing the resonant length
increases radiation resistance at resonance.

Example A set of woven Teflon fiberglass (¢, = 2.55) dielectric boards supports
a resonant-length slot in a stripline circuit. Compute resonant length and center-fed
radiation conductance for a slot that resonates when a’ = 0.48X in air.

The effective dielectric constant from Eq. (5-22) is 1.44. The effective dielectric
constant reduces the resonant length:

a 0.48
—=—=040
A J1.44

Equation (5-21) finds the resonant conductance as 3.27mS or 306 2 resistance. The
high impedance requires an offset feed to match the slot to a stripline. We locate the
offset feed from the slot center to reduce the input impedance:

S a A .1 Zin
= — — Sin B
2 2Tl?\/g Zc

We can determine the 50- and 100-Q2 feed points of the slot:

(5-23)

50Q: &= 0404 = 0.145A
2 2nJ/144 306

100Q2: & = 0404 _ * sin~ 100 =0.119A
2 27/ 1.44 306

At 2 GHz, the dimensions of the slot and the feed locations become:

a =6cm: &=217cm (50Q) 0.83 cm from edge
& =1.79cm (100 2) 1.21 cm from edge
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Increasing the slot width decreases the impedance below that of the thin-width slot
result given above and will require experimental work to find the exact feed point.
Measuring the center-fed impedance allows the use of Eq. (5-23) to compute the
approximate offset feed point.

Figure 5-55 illustrates a typical stripline-fed slot. Shorting the center strip to ground
at the location of the slot creates a current maximum at the slot for feeding. An
open circuit a quarter wavelength beyond the slot creates the same standing-wave
current maximum at the slot. Convenience determines the feeding method. The slot
interrupts currents only in the top ground plane. Unequal current flow on the two
ground planes unbalances the stripline and excites a parallel-plate mode between the
ground planes. Waveguide wall slots also excite higher-order modes, but these cannot
propagate because they are below their cutoff frequencies. The parallel-plate mode
is another TEM mode with no low-frequency cutoff. Power in this mode propagates
away from the slot and couples into the other slots in an undesirable manner or radiates
from edges.

Shorting pins between the two ground planes contain the parallel-plate mode around
the slot. By placing the rows of pins parallel with the axis of the slot and a quarter
wavelength away from the slot, the rows of pins reflect an open-circuit impedance at
the slot. The side rows of pins complete the box and convert the parallel-plate mode
into a waveguide TE o mode. The box formed by the rows of shorting pins and the two
ground planes form a resonant cavity in shunt with the slot admittance. The resonant
cavity places a standing-wave current null on a centered slot and does not excite it.
Only the normal stripline currents feed the slot.

From an impedance point of view, the cavity is a second parallel resonant circuit
that increases the stored energy of the antenna. Q increases and bandwidth decreases.
Because only a portion of the available power would be converted to the parallel-
plate mode by the slot discontinuity, we analyze the cavity as a circuit coupled
through a transformer to the input. The transformer increases the impedance of the
resonant cavity at the input and controls the division of power between the slot and

Plated through Hole
Shorting Pin
Slot

Ground Planes

FIGURE 5-55 Stripline series slot.
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the cavity. The cavity reactance slope limits the bandwidth of the stripline-fed slot
to a few percent. Increasing the impedance of the waveguide cavity transmission line
reduces the reactance slope contributed by the cavity. We increase the bandwidth by
using greater distances between the ground planes and thereby increase the waveguide
transmission-line impedance. In general, greater volumes for an antenna increase the
impedance bandwidth.

Rotating the slot relative to the stripline feeding line reduces its load on the transmis-
sion line. The waveguide top wall series slot relation [Eq. (5-34)] applies in this case.
The slot maintains its polarization while the nonradiating stripline center conductor
approaches the slot at an angle. Rotated slots in waveguide must be paired symmet-
rically to reduce cross-polarization. A longitudinal array [37] can be made by placing
all the slots on the centerline of a boxed stripline. Either edge plating or a series of
plated-through holes forms a waveguide structure that supports only the TE;y mode.
Slots placed on the centerline (as in Figure 5-59, slot c) fail to interrupt the waveguide
mode currents. The stripline meanders below and varies the excitation by changing the
angle between the slot and the stripline center conductor. The slight loading of each
slot excites very little of the parallel-plate mode that causes unwanted slot coupling.
Both traveling-wave and resonant linear arrays are possible. See Section 5-26 for a
discussion of slot arrays.

5-22  SHALLOW-CAVITY CROSSED-SLOT ANTENNA

We can feed the slot in Figure 5-55 by exciting the cavity in an odd mode from two
points on opposite sides of the slot. To be able to excite both polarizations, we divide
the slot in two and rotate the two parts in opposite directions by 45° to form a cross.
We use a square cavity to maintain symmetry and replace the shorting pins with solid
walls (Figure 5-56c¢). Since we feed across the diagonal between the crossed slots, we
excite both slots. The sum of the fields radiated from the two slots is polarized in
the direction of the diagonal. We increase the radiation conduction by lengthening the
crossed slots to the maximum, which lowers the Q (increased bandwidth). The cavity
compensates for the slot susceptance to obtain resonance. A crossed-slot antenna was
built [38] with the following dimensions:

Cavity edge  0.651
Cavity depth  0.08X
Slot length 0.915A

The measured 2:1 VSWR bandwidth was 20.8%. The bandwidth exceeded that of
a microstrip patch of the same thickness by about +/2. Lindberg [39] found that the
resonant length of the slot depends on the cavity depth and requires some experimental
adjustment.

King and Wong [41] added ridges (Figure 5-56b) to increase the bandwidth. Anten-
nas with ridges need a larger cavity width and a longer slot than the unridged design.
The ridges can be stepped as shown to increase the bandwidth. Adding ridges gives
us extra parameters to adjust for best input match performance. The following design
with uniform ridges produces a 58.7% 2.5:1 VSWR bandwidth with a double reso-
nance curve.
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FIGURE 5-56 Shallow-cavity
(c) typical slot configuration. All

Cavity edge
Slot length
Ridge width
Cavity thickness

=
B

180° Hybrid
90° Hybrid
()
crossed-slot antenna: (a) cavity with ridge; (b) cavity with ridge;
dimensions are in inches. (From [38], Fig. 2, © 1975 IEEE.)

0.924A Slot width, W,  0.058x
1.3A4 Ridge height 0.076\
0.087x Feed width, W;  0.144A
0.1154

Both the ridge and slot shapes can be varied to improve the performance. As fed in

Figure 5-56c¢, the antenna radi

ates circular polarization on a boresight. Near the horizon

(90° from the boresight), the polarization reduces to linear as we enter the null of one

of the slots.

5-23 WAVEGUIDE-FED SLOTS [24, p. 291; 40, p. 95]

Waveguide is an ideal transmission line for feeding slots. Although its impedance
cannot be defined uniquely, all possible candidates—voltage and current, power and
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current, or power and voltage—yield high values that match the high values of
impedance of half-wavelength slots. Waveguide provides a rigid structure with shielded
fields. The slots couple to the internal fields and allow the easy construction of linear
arrays fed from traveling waves or standing waves in the waveguide. By controlling the
position of the slots in the walls, the amplitude of the slot excitation can be controlled.

The waveguide fields excite a slot when the slot interrupts the waveguide wall
currents. When excited, the slot loads the waveguide transmission line. We make the
following assumptions about the wall slots.

1. The slot width is narrow. When a slot grows in width, we must either consider it
to be an aperture in the wall or assume that it is excited by interrupting currents
in two coordinate directions.

2. The slot is a resonant length and its length is near A/2. The waveguide envi-
ronment, the wall thickness, and the position in the wall all affect the resonant
length. In most cases, experiments must determine the resonant length.

3. The electric field is directed across the narrow width of the slot and varies sinu-
soidally along its length and is independent of the excitation fields. This reiterates
assumptions 1 and 2. An aperture radiates the polarization of the incident fields,
but resonant-length slots can be excited only with a sinusoidal voltage standing
wave. The slot direction determines polarization.

4. The waveguide walls are perfectly conducting and infinitely thin. Even though
the walls have thickness, the difference has a small effect on the general form of
the slot excitation formulas. As in the case of the resonant length, experiments
determine a few values from which the rest must be interpolated, or the values
provide the constants for more elaborate models.

5-24 RECTANGULAR-WAVEGUIDE WALL SLOTS

The lowest-order mode (TE ;) in a rectangular waveguide has the following fields [41,
p. 69]:

E, = Egsin(k.x)e /%

k E .
H, = — 2" sin(k,x)e ik (5-24)
wp

k.E
sz_. 0

jou

cos(kpx)e sz

where k. = /a, k; = k7 — k*, and a is the guide width with cutoff wavelength i, =
2a. We can separate TE;p-mode rectangular waveguide fields into two plane waves
that propagate at an angle to the axis and reflect from the two narrow walls. We denote
as £ the angle of the waves measured from the centerline of the waveguide or with
respect to the wall. We relate the waveguide propagation to this angle:

£ =sin"'(A/Ao) (5-25)

At high frequencies, £ — 0 and the waves travel straight through the guide as though
the walls are not there. As the wavelength approaches cutoff, & — 90° and the waves
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reflect back and forth between the sidewalls instead of propagating down the guide.
This angle factors into the expressions for slot loading to the waveguide transmission
line and can be related to propagation:

A A
cosE /1= (/h)?

phase velocity Vpn = £ and group velocity = ccosé&
c

osé

guide wavelength, A, =

A
relative propagation constant P = o cos &
g

For analysis we divide the fields bouncing down the waveguide into z-directed fields of
the axial wave moving down the guide and x-directed fields of the transverse wave, a
standing wave between the two narrow walls. A standing wave causes a 90° separation
of the voltage and currents in a transmission line as shown in Figure 5-1. The phase
of the currents excited in the waveguide walls due to the fields will be 90° relative to
the electric field.

The wall currents J; are determined by J = n x H, where n is the unit normal to
the wall. When we apply this boundary condition to the walls, we obtain the following
wall currents:

Sidewalls:
Jy = —j—EOkCe’ﬂ‘gZ
y oL
Bottom wall (y = 0):
Eo _; . . .
Jy = —e /" kg sin(kcx)Z + jk. cos(kex)X] (5-26)
wp

Top wall (y = b):

—E )
Ty = —2e M7 [k, sin(kex)Z + jke cos(kex)R]
o

Equation (5-26) shows that transverse wave currents are 90° out of phase with
respect to the electric field Ey. The current alternates between the two types of current
as the wave propagates down the waveguide. In the case of a standing wave along the
z-axis caused by a short circuit, the axial wave currents are 90° out of phase with the
electric field across the waveguide (Figure 5-1). The peak amplitude of the transverse
wave currents occurs at the same point as the electric field in a standing wave along
the z-axis, since both are 90° out of phase with the axial wave currents. The sidewalls
Jy have only transverse wave currents. The top and bottom broad walls have both x-
directed transverse wave and z-directed axial wave currents. Figure 5-57a shows the
direction and amplitude distribution of these transverse waves. Slots interrupting these
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FIGURE 5-57 TE;p-mode rectangular waveguide wall currents: (a) transverse wave currents;
(b) axial wave currents.
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~ Current Current

FIGURE 5-58 Short-circuited waveguide axial and transverse wave currents and the location
of longitudinal wall slots.

currents are shunt loads to the waveguide. In an axial wave along the z-axis, these
transverse waves propagate in the z-axis direction.

Equation (5-26) shows that the transverse wave currents are 90° phase with respect
to the axial wave currents. Figure 5-58 shows the two types of currents along the z-
axis when the guide has a short circuit at its end. When measuring slots that interrupt
transverse wave currents, we need to place the waveguide short at A,/4 or 31,/4 away
from the slot. This locates the peak of the transverse wave currents flowing around
the waveguide walls at the slot shown in Figure 5-58 because the axial wave currents
are at a minimum. The second consideration is the shunt load on the waveguide. The
Agl4 section of waveguide transforms a short circuit on the end of the waveguide (to
the axial wave currents) to an open circuit at the slot. From a voltage point of view
the susceptance of the shorted stub is at a minimum. We place the short circuit at
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Ag/2 from the last slot for a series loading slot that interrupts the axial wave currents.
This locates the current maximum at the slot and causes maximum interaction with the
waveguide fields. Figure 5-58 illustrates the placement of the next slot A,/2 down the
guide at the next current maximum. Figure 5-57a indicates the transverse wave current
flow and we see that the currents flow toward the centerline, producing currents 180°
out of phase on the two sides of the centerline. The two slots in Figure 5-58 are
excited by oppositely directed currents that add 180° phase shift between the slots.
This phase shift compensates for internal standing-wave current phasing of 180° due
to the A,/2 spacing.

Longitudinal top and bottom wall slots cut x-directed transverse shunt currents. The
central slot ¢, located at a current null, fails to be excited. We use this nonradiating
slot to insert a traveling probe to measure VSWR. When moved off center, slots d and
e cut x-directed currents and are excited. The shunt conductance has the relation

/

g = g1 sin? 2o (5-27)
a

where x’ is the distance from the guide centerline. Shunt currents on either side of the
centerline of the top or bottom wall (Figure 5-57a) have different directions. Besides
any traveling-wave phase, slots d and e (Figure 5-59) are 180° out of phase. Top-wall
longitudinal slots generate no cross-polarization, since all maintain the same orientation.
We relate the peak conductance g; to the direction of the waves in the guide [41]:

2
g = 2.09%%3“)551 (5-28)

Equation (5-28) indicates that the conductance increases for a given spacing off the
centerline as the frequency approaches cutoff and & — /2.

We cannot use Eqgs. (5-27) and (5-28) for design because they do not include the
wall thickness and we need to determine the exact length for resonance. The res-
onant length depends on the spacing from the centerline. Fortunately, the coupling
between longitudinal slots is small enough that measurements can be made on sin-
gle slots. Elliott suggests a measurement plan for longitudinal slots [3]. We build a
series of slotted waveguides each containing a single slot at different distances from
the centerline. Seven cases are sufficient to generate a curve for design. We need

Shunt Loads Series Loads

FIGURE 5-59 TE;p-mode rectangular waveguide wall slots.
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to locate a sliding short circuit farther down the waveguide and adjust it until the
standing-wave current peaks at the slot to produce maximum radiation and conduc-
tance. With a network analyzer we measure the conductance normalized with respect
to the waveguide impedance. Initially, we machine the slots too short, measure the
results, and then machine longer slots using the same guides and remeasure until they
pass through resonance.

Since the manufacturing cost of test slots is high and they require careful mea-
surements, analytical methods of determining slot parameters become attractive. FEM
programs can model the details of the slot, the waveguide, and the wall thickness. A
number of runs similar to those of the measurements allows design curves to be created.

Sidewall slots (Figure 5-59) interrupt shunt transverse waves. Slot a fails to cut
surface currents and is not excited. By tilting slot b, currents are cut. The sidewall slot
conductance is given for 6 < 30° by

g = gosin’6 (5-29)
where g¢ is the peak conductance. Note that the sidewall slots must cut into the top

and bottom walls to achieve a resonant length. The peak conductance can be related
to the direction of the waves in the waveguide [Eq. (5-25)] [1, p. 82]:

.4
asin” &

=2.09
g0 bcosé&

(5-30)

Equation (5-30) shows the relationship of the slot load conductance versus the fre-
quency. As frequency increases, £ decreases and the conductance falls off as the
fourth power of the sine of the angle. The complete theory of Stevenson gives the
conductance for an arbitrary tilt [42]:

(5-31)

= asin® & |:sin«9 cos[(7t/2) cosésin@]ir

bcosé& 1 —cos2 £ sin® 6

Tilting the slots to interrupt currents introduces cross-polarization components in the
array pattern. We alternate the direction of tilt to reduce cross-polarization. Two things
prevent the total cancellation of cross-polarization. First, the amplitude taper of the
array changes the amplitude from element to element and the fields do not cancel.
Alternating the tilt of the slots symmetrically about the centerline in an array with an
even number of elements prevents cross-polarization on the boresight. Off the boresight,
the array effect of the spaced elements introduces a cross-polarization pattern, since
cross-polarization is not canceled at each element.

Although Eqgs. (5-29) and (5-30) give the slot conductance, they cannot be used
for design. They assume an infinitely thin wall and ignore the high level of radiation
along the waveguide wall. These slots readily couple to neighboring slots. The effective
conductance needs to include the mutual conductance. For these slots we build a series
of slotted waveguides containing a group of slots all tilted to the same angle and cut
so that they are a resonant length. This means that we will first need to build the
slots about 5% shorter than resonance length, make measurements, and then machine
the slots longer and repeat the measurements to find the resonant length. We space
the slots at the same distance as will be used in the final design and either place a
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short-circuit beyond the last slot to produce a maximum current at all slots or load the
waveguide to form a nonresonant array. We measure the load of the group of slots on
the waveguide transmission line using a network analyzer and divide the conductance
by the number of slots to get an incremental conductance. This conductance is larger
than the one measured on a single slot. We fit the group of measurements to a curve
that replaces Eq. (5-29) for design.

Axial z-directed waves (Figure 5-57b) peak in the center of the broad walls and taper
to zero at the edges. They remain zero on the sidewalls. When centered, transverse
slots f and g (Figure 5-59) interrupt the maximum current. When moved off center,
g, their series loading to the waveguide drops:

x/

R = Rycos® *% (5-32)
a

The maximum resistance is related to the direction of the waves in the waveguide:

a sinzf S (T,
Ry = 2.092 cos (— sms) (5-33)
b cos’ & 2

An evaluation of Eq. (5-33) shows that the resistance increases as frequency approaches
cutoff for a given location of the slot, a result similar to that for other slot configura-
tions. The mutual coupling between these series slots is high. We perform incremental
resistance experiments similar to the procedure used for sidewall slots to discover the
true values of resistance versus offset.

Rotating the broadwall transverse slot, &, reduces the z-axis directed current inter-
rupted. When the slot is centered, equal and opposite shunt currents are cut by the slot
and the slot fails to present a load to shunt currents:

R = Rycos’ 6 (5-34)

We can excite slots @ and ¢ by probe coupling into the waveguide. A probe placed
next to the slot and extending into the guide feeds the slot. The longer the probe, the
more it disturbs the waveguide fields to excite the slot. Probes placed on opposite sides
of the slots induce fields 180° out of phase with respect to each other.

5-25 CIRCULAR-WAVEGUIDE SLOTS

Figure 5-60 shows the transverse wave and axial wave currents of the circular waveg-
uide TE;; dominant mode. Slots may be placed successfully only at the current
maximums without affecting the polarization of the internal wave. A longitudinal slot
placed halfway between the current maximums, 45°, interrupts only shunt transverse
waves. Since any polarization is possible in the circular waveguide, analytically we
divide the incident wave into two waves. One is polarized in the direction of the slot;
the other is polarized perpendicular to the slot axis. The wave polarized perpendicular
to the slot location has its current maximum at the slot and it removes power from
the wave. The other wave produces a current null on the slot. When we combine the
two fields after the slot, the unloaded wave is larger and the combined wave rotates
its polarization toward the slot. Circumferential slots interrupting axial wave currents
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FIGURE 5-60 TE;;-mode circular waveguide wall currents.

also cause polarization rotation of the wave when not centered 90° from the electric
field direction.

Slots placed at the maximum of transverse currents cut them when rotated about the
axis of the waveguide. Like rectangular-waveguide sidewall slots, the slots oriented
perpendicular to the guide axis, circumferential, do not load the waveguide. Rotating
the slot increases the shunt load on the waveguide. Slots placed at the maximum of the
axial wave cut z-directed currents. Field probes can monitor the internal fields of the
waveguide through a longitudinal slot without causing radiation from the slot. When
the slot is rotated away from the axis direction, it interrupts series axial wave currents,
loads the waveguide, and radiates.

Coaxial TEM-mode transmission line and TMy;-mode circular waveguide have the
same outer wall currents (Figure 5-61). Slots can be excited and load the waveguide
only by interrupting these axial wave currents. In Figure 5-61, slot a fails to cut currents
and is not excited. VSWR measuring probes use this slot. Slots b and ¢ interrupt the
currents and series-load the guide. Slot ¢, whose total length is resonant, is excited by
the small portion in the center cutting z-directed currents. We can probe feed slot a,
but the probe shunt loads the waveguide or TEM coax that would be series loads on
the waveguide if they directly interrupted the axial wave currents.

Traveling Wave Currents Wall Slots

FIGURE 5-61 Coax or TMy;-mode circular waveguide wall currents and slots.
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5-26 WAVEGUIDE SLOT ARRAYS [4, p. 402]

Waveguide slot arrays can produce low sidelobe antennas for pencil beams with
good aperture efficiency. Array fabrication requires close manufacturing tolerances to
achieve the desired amplitude distribution because random errors in manufacture pro-
duce unwanted sidelobes and raise the general sidelobe level. Producing these arrays is
an art requiring careful analysis of all slot interactions, slot dimensioning determined
from models and measurements, and precision machining and assembly.

An array consists of a set of waveguides loaded with slots and joined with a corporate
feed into the total array. The corporate feed can also be a slotted array feeding the
individual waveguides that contain the radiating slots. Aperture size and distribution
determine the beamwidth and sidelobes in the various planes. We divide arrays of
slots into two groups: nonresonant, excited by traveling waves, and resonant, excited
by standing waves. Waves either travel along the guide into a terminating load or reflect
from a short and set up standing waves along the z-axis (Figure 5-58). Traveling-wave
currents excite the slots as they pass, and slots may be placed anywhere relative to the
load. The distance between slots and the propagation constant determine the relative
phases. Standing waves set up a fixed sinusoidal current pattern along the waveguide
axis at a given frequency. The standing-wave phase is either 0° or 180°. Slots placed
in the current nulls of standing waves interrupt no currents and fail to be excited by
the waveguide. We can vary the amplitude by the z-axis placement of the slots. The
termination determines the array type. Do not confuse transverse waves that produce
shunt currents and z-axis standing waves caused by a short-circuit termination. Both
traveling and standing waves on the z-axis have shunt currents.

Standing waves (resonant array) produce beams normal to the array axis. A resonant
array maintains its beam direction when frequency changes, but the standing-wave
pattern shifts and changes the excitation of the slots (Figure 5-62). The amplitudes of
the slots farthest from the short circuit change the most, since the standing waves have
shifted farther. The length of the resonant array determines its bandwidth. The pattern
shape changes because distribution and input impedance change as the loads change
when the standing-wave currents shift.

Nonresonant array (traveling-wave) beam directions are functions of the propaga-
tion constant of the wave exciting the slots. Changing the frequency shifts the beam
direction. If the load on the end reflects a wave, another beam forms from the reflected
traveling wave. The second beam appears at the same angle to the axis of the waveguide

Frequency
Shift by 10% !

P

! ]
\ J Waveguide\Axis
Half Guide
Wavelength

Slot Slot Slot Slot

FIGURE 5-62 Standing-wave currents in resonant array relative to slots and after 10% fre-
quency shift.
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as the first but measured from the —z-axis. The first-pass radiated power and return
loss of the load determine the level of this second beam relative to the first.

Both resonant and nonresonant waveguide slot arrays use resonant-length slots. We
space the slots A,/2 apart in the resonant array, as shown in Figure 5-58. We place the
slots at alternating positions about the centerline of the broadwall or at alternating tilt
angles in the sidewall to give the additional 180° phase shift to produce a broadside
beam. The admittances of the slots of the resonant array add at the input because
the A,/2 spacing produces a complete rotation around the Smith chart. In nonresonant
arrays a traveling wave is used to excite the slots. We space the slots at other than
Ag/2 distances and terminate the waveguide with a load. We assume a matched system
throughout the antenna in a first-order analysis suitable for most designs. The beam of
most nonresonant slot arrays is designed to backfire at an angle to broadside.

5-26.1 Nonresonant Array [43]

In a nonresonant waveguide, slot array resonant-length slots are used in a traveling-
wave antenna terminated at the end with a load. The antenna radiates at an angle to
the normal of the waveguide face determined by wave velocity and slot spacing. We
vary the slot loading along the waveguide so that each slot radiates the proper amount
of the remaining power. A termination absorbs the power remaining after the last slot.
With a mismatched termination the reflected power radiates a second lower-amplitude
beam as the wave travels to the source.

We design with either shunt- or series-loading slots. A shunt slot radiates the power
|V|2gi/2, where g; is the normalized slot conductance. Similarly, a series slot radi-
ates the power |I|?r;/2, where r; is the normalized slot resistance. We normalize the
conductance or resistance to a per unit length function: g(z) or r(z). The attenuation
equation (4-78) becomes

L AP ) o —r() (5-35)
Pydz ~ °F T

Equation (5-35) modifies the normalized attenuation equation (4-79) [24, p. 291]:
|A(z)I?

L z
[1/<1—R>]f |A<z)|2dz—f |A(2)|* dz
0 0

g(x)L = (5-36)

where the aperture runs =L /2 and R is the ratio of the input power absorbed by the
termination. A(z) is the normalized aperture distribution on the interval ﬂ:%. We change
to r(z)L in Eq. (5-36) for series-loading slots.

Equation (5-36) assumes light loading by the slots so that the waveguide transmis-
sion line is matched at all points. This approximation improves as the length increases.
Equation (5-36) is the same as Eq. (4-79) except for a constant. We divide the values
in Table 4-28 or Figure 4-26 by 4.34 to calculate normalized conductance (resistance)
of shunt (series) slots times the array length. Each slot provides the loading over the
spacing between slots:

dj2
8i =/ g(x)dz ~ g(z;)d
—d/2

where d is the spacing of the slot at z;.
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We space the slots at other than A,/2. At A,/2 spacings, all reflections from the
mismatches (slots) add in phase at the input. The small mismatches from each slot add
with various phase angles for element spacing different from A,/2 and cancel each
other to some extent to give a good input match over a reasonable bandwidth. When
we increase the array length, we can no longer ignore the waveguide losses. The slot
conductances become very small and radiate power on the same order as the losses.
We modify Eq. (5-36) to include the losses as in Eq. (4-79), and the slot conductance
increases to compensate for the ohmic losses in the walls. A small slot conductance is
difficult to achieve with longitudinal broadwall slots because one edge of the slot must
be over the centerline of the waveguide wall and the results become unpredictable.
The achievable conductances limit possible distributions in a slotted waveguide array.
Mutual coupling between slots changes the distribution and we must modify the slot
offsets to account for mutual coupling using Eq. (3-23).

If we specify the radiating power of each slot in a discrete sequence P;, we modify
Eq. (5-36). The integrals become summations, since

|A(2)]> =8(z — id)P;

where d is the slot spacing, §(x) the Dirac delta (impulse) function, and P; the power
coefficient of the ith slot. The power radiated is

N L
ZPi=Pin<1—R)=/ AP dz
i=1 0

The integral foz |A(z)|? dz is the power radiated by the preceding slots. Equation (5-36)

reduces to
P;

1— Z:] P,

Dissipating more power in the termination decreases each P; and the required conduc-
tance (resistance) range of the slots.

We alternate the locations of longitudinal slots about the centerline of the broadwall
to add 180° phase shift between elements. Similarly, sidewall slot directions are alter-
nated along the array. The additional phase shifts cause backfire of the beam in most
cases. The element spacing, as well as the traveling-wave phase velocity, determines
the beam direction. The phasing equation in the array factor for beam peak becomes
kd cosO + 2nmt = Pkd — m, where 6 is measured from the array axis, P is the relative
propagation constant (P < 1), and n is an arbitrary integer. We solve for the beam peak
direction and the necessary spacing to get a particular beam direction:

g =r= (5-37)

n—+ Ha
0 = cos”! |:P - %] (5-38)
d n+ %
e__"7"3 5-39
A P — cos Opax ( )

We usually work with n = 0 because using n > 0 produces multiple beams.
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Example Compute slot spacing to produce a beam at § = 135° in a waveguide of
width 0.65A. Calculate the relative propagation constant from the general equation for

a waveguide.
5\ 2
P=,1—-[—
Ae

1\? A
P=J1—-(—) =0640 ="
1.3 g

From Eq. (5-39), using n = 0, we determine spacing in free space: d/\ = 0.371. The
waveguide spacing is given by

For A, = 2a,

d d
= = 2P =0.371(0.640) = 0.237
e A

If we use n = 1, then d/A = 1.11, which radiates an additional beam at 8 = 79° for
n =0 [Eq. (5-38)].

Beams enter visible space at cosd = —1 (180°) and move toward end fire (9 = 0)
as the spacing increases. We calculate the region of single-beam operation from Eq. (5-
39). The minimum d/A occurs when 6 = 180° for n = 0, and the maximum occurs

when 8 = 180° for n = 1:
0.5

1+ P

1.5
1+P

d
<-< 5-40
=4 = (5-40)

We substitute the upper bound into Eq. (5-38) and use n = 1 to derive the minimum
angle of single-beam operation:

1+ P
Bumin = cOs ™! (P - %) (5-41)

Example Determine the minimum scan angle (toward end fire) for P = 0.6, 0.7, 0.8,
and 0.9 that has a single beam. We substitute these values into Eq. (5-41) to find:

P ‘ 06 07 08 09

86.2° 82.3° 78.5° 74.5°

emin

If we scan to 6 = 90°, the spacing becomes A,/2 and the mismatches from each slot
add to the input and produce a resonant array. The array with a forward firing beam has
a slot spacing greater than 1, /2. Given a waveguide with P = 0.8, we use Eq. (5-39)
to calculate spacing to give beams at 80° and 100°:

d 0.5 d 0.5
—=—""—-=0798 and - =_—"——=0514
A 0.8 — cos 80 A 0.8 — cos 100

d d d d

—=—-P=0639 and — =-P =0411

Ag A Ag A
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A nonresonant array has a backfire beam that scans toward broadside as frequency
(and P) increases. Hansen [44, p. 90] gives the slope of the beam shift with fre-
quency change:

dsinf 1 .
= — —sind (5-42)
df P

where f is the frequency.

5-26.2 Resonant Array

We space the slots at A, /2 and terminate the waveguide end with a short circuit either
Ag/4 or 3Ag /4 from the last one for shunt loading slots in a resonant array. The beam
radiates broadside to the array. The 2: 1 VSWR bandwidth of the array is approximately
50%/N for N elements in the array. The antenna is narrowband. The admittances of
all elements add at the input. To have a matched input, ZlN:1 g; = 1, where g; is the
normalized slot conductance. If we define P; as the normalized power radiated by the
ith slot, then

N
giZPi where ZPlzl
i=l1

5-26.3 Improved Design Methods

The methods given above ignore the interaction of slots and their effect on the trans-
mission line. We can describe the array as a loaded transmission line and consider the
interactions of the slots by accounting for the transmission-line mismatches [45, pp.
9-11]. We ignore the mutual coupling for longitudinal broadwall slots because it is
small, but sidewall slots have high mutual coupling and require an adjustment of the
effective slot impedance. We use an incremental admittance, found from the measured
change in admittance, when one slot is added to the array or total conductance of the
array divided by the number. This accounts somewhat for the mutual coupling.

Elliott and Kurtz [46] relate the self-admittance of a longitudinal broad-wall slot,
measured or calculated, to the mutual admittance of the array of slots found from
equivalent dipoles. They use Babinet’s principle and the mutual impedance of equiva-
lent dipoles. The method requires solution of a set of 2N equations in the location and
length of the slots to give the desired excitation while accounting for mutual coupling.
Their formulation ignores slot interaction in the waveguide beyond the first-order mode.
Elliott [47] extends this method to the analysis and design of nonresonant arrays. Of
course, when we design a planar array, the slots between waveguide sticks couple
readily and we need to account for the mutual coupling between them. The voltage
excitation needs to be adjusted to account for this coupling or the desired distribution
will not be achieved.

Dielectric loaded waveguide arrays require additional analysis because the approx-
imation of a piecewise sinusoidal distribution, such as dipole current, fails to model
the slot distribution adequately. Elliott [48] uses a slot distribution

E() X
X) = CcOS —-
2b

where b is the length. Mutual impedances between dipoles that have the wrong dis-
tribution are not used; instead, the active admittances are found from forward and
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ck scattering between the slots directly. The method still requires the solution of 2N
uations for the slot lengths and locations.
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MICROSTRIP ANTENNAS

Microstrip antennas are planar resonant cavities that leak from their edges and radiate.
We can utilize printed circuit techniques to etch the antennas on soft substrates to
produce low-cost and repeatable antennas in a low profile. The antennas fabricated on
compliant substrates withstand tremendous shock and vibration environments. Manu-
facturers for mobile communication base stations often fabricate these antennas directly
in sheet metal and mount them on dielectric posts or foam in a variety of ways to elim-
inate the cost of substrates and etching. This also eliminates the problem of radiation
from surface waves excited in a thick dielectric substrate used to increase bandwidth.

As electronic devices continue to shrink in size, the antenna designer is pushed to
reduce the antenna size as well. Cavity antennas use valuable internal volume, but we
have the conflict that restricting the volume limits impedance bandwidth. Bandwidths
widen with increased circuit losses (material losses) or by efficient use of the restricted
volume. Bounds on bandwidth can be found by enclosing the antenna in a sphere and
expanding the fields into TE and TM spherical modes [1,2]. Each mode radiates, but
it requires more and more stored energy as the mode number increases. Decreasing
the volume increases the Q value of each mode and a sum, weighted by the energy
in each mode, determines the overall Q value. Antennas that use the spherical volume
efficiently and reduce power in the higher-order modes have the greatest bandwidths.
A single lowest-order mode puts an upper bound on bandwidth, given the size of
the enclosing sphere. Greater volumes have potential for greater bandwidth provided
that the energy in higher-order spherical modes is restricted. Increasing material losses
or adding small resistors increases bandwidth beyond the single-mode bound [2]. We
discover that increasing the volume of flush antennas increases the impedance band-
width provided that the radiation mode on the structure can be maintained. Thicker
substrates develop greater bandwidths, but they increase the possibility of higher-order-
mode excitation and surface-wave losses. Losses limit the lower bound of bandwidth
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as we reduce the thickness because efficiency degrades to a point where the bandwidth
remains constant.

Microstrip consists of a metal strip on a dielectric substrate covered by a ground
plane on the other side. Unlike stripline, the single ground plane shields the circuit on
only one side, but normal packaged microstrip—within a receiver, for example—has
a second shielding ground plane to reduce circuit interactions. The dielectric substrate
retains most of the power because the shielding ground plane is spaced a few substrate
thicknesses away. Removing the shield in antenna applications allows radiation from
resonant cavities. We also discover feeding circuits etched on the substrate radiate to
some extent, but their radiation is comparatively small.

Arrays of antennas can be photoetched on the substrate, along with their feeding net-
works, and microstrip provides easy connections to active devices and allows placement
of preamps or distributed transmitters next to the antenna elements. Diode phase-shifter
circuits etched in the microstrip form single-board phased arrays. Microstrip circuits
make a wide variety of antennas possible through the use of the simple photoetching
techniques.

The vast literature on microstrip antennas concentrates on the microwave circuit
analysis of the internal parts of the antenna used to control the internal modes. Design-
ers have increased the bandwidth of the antenna by coupling to multiple resonators,
such as vertically stacked or coplanar coupled patches or by using internal slots and
apertures. These multiple resonators increase the impedance bandwidth, and in the
best cases the antenna continues to radiate the same pattern. As antenna designers we
need to concentrate first on obtaining the desired pattern while working to increase
the impedance bandwidth. Simple microstrip antennas have much larger pattern band-
widths than impedance bandwidths, but as more resonators are added to increase the
impedance bandwidth, spreading in the horizontal plane alters the radiated pattern and
we must return to concentrate on the pattern.

Microstrip patch antennas consist of metal patches large with respect to normal
transmission-line widths. A patch radiates from fringing fields around its edges.
Impedance match occurs when a patch resonates as a resonant cavity. When matched,
the antenna achieves peak efficiency. A normal transmission line radiates little power
because the fringing fields are matched by nearby counteracting fields. Power radiates
from open circuits and from discontinuities such as corners, but the amount depends
on the radiation conductance load to the line relative to the patches. Without proper
matching, little power radiates.

The edges of a patch appear as slots whose excitations depend on the internal fields
of the cavity. A general analysis of an arbitrarily shaped patch considers the patch to
be a resonant cavity with metal (electric) walls of the patch and the ground plane and
magnetic or impedance walls around the edges. The radiating edges and fringing fields
present loads along the edges. In one analysis [3] the patch effective size is increased to
account for the capacitive susceptance of fringing fields, and the radiation admittance is
ignored to calculate resonant frequency. The far field is integrated to compute radiated
power and the equivalent radiation conductance. The second method [4] is to retain the
patch size but satisfy boundary conditions into a loaded wall whose load is determined
by radiation and fringing fields. Assuming a constant electric field from the ground
plane to the substrate allows solutions in terms of modes TM to the substrate thickness.
Boundary conditions determine possible modes and correspond to the dual TE modes
of waveguides having electric walls. Patches in the shape of standard coordinate system
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axes, such as rectangular and circular, give solutions in terms of tabulated functions.
Numerical techniques used for arbitrarily shaped waveguides can be applied to patches
with nonstandard shapes. We consider only rectangular and circular patches.

6-1 MICROSTRIP ANTENNA PATTERNS

We start our discussion of patches with their pattern characteristics. It is difficult to
separate a discussion of pattern from the internal construction consideration, but we
will only briefly discuss the internal structures that affect the pattern. The small size
of microstrip antennas limits control of the pattern and we must use arrays of patches
to control its pattern seriously. Rectangular and circular are the most common shapes
for microstrip antennas and they radiate similar broad patterns. When we load the
cavity to shrink its size, it radiates wider beamwidth patterns that lower directivity
(gain). Antennas that couple to coplanar patches to increase the impedance bandwidth
will radiate narrower beams, but the basic patch has a wide beamwidth. If we couple
to multiple coplanar patches, we can expect the pattern to narrow or vary its shape
as the mixture of modes on the various patches changes over the frequency range
of operation.

Patches consist of metal plates suspended over large ground planes. We excite the
cavity in a variety of ways that we discuss later. Electric currents flow on the plate and
on the ground plane around the antenna, and these radiate. If we use vertical probes
to excite the antenna from coaxial lines, the currents flowing on these radiate and
add to the pattern. We can reduce the antenna size by adding vertical shorting plates
(quarter-wave patches) or shorting pins near the feed pins (compact patches), and these
also radiate from the current flow on them. Remember that the patch radiates from real
electric currents, although the distribution is complicated.

We simplify the problem of computing patch radiation by using magnetic currents
along the edges. Figure 6-1 illustrates the fringing electric fields around the edges of
square and circular patch antennas excited in the lowest-order cavity modes. The arrow
sizes indicate the magnitude of the fields. The square patch has nearly uniform fields
along two edges we call the width, and a sinusoidal variation along the other two edges,
called the resonant length. The fields vanish along a virtual electrically short-circuited
plane halfway across the patches. On either side of the short-circuit plane, the fields
are directed in opposite directions. Looking from above the fields along the width,
both edges are in the same direction. The circular patch fringing fields distribution
varies as cos ¢, where the angle ¢ along the rim is measured from the peak electric
field. Magnetic currents found from the fringing electric fields can replace the electric
currents located on the patch and the surrounding ground plane for pattern analysis.
Figure 6-2 shows the distribution of magnetic currents around the edges, with the size
of the arrowhead indicating magnitude.

Our use of magnetic currents around the patch perimeter reduces the pattern cal-
culation to equivalent slots. A two-element array consisting of slots with equivalent
uniform magnetic currents produces the E-plane radiation of a rectangular patch. To
first order, the slots are spaced A/2,/¢, and we can determine the pattern from the
equivalent two-element array. The magnetic currents along the resonant length sides
individually cancel because the current changes direction halfway across the edge. The
currents also cancel from side to side. These cancellations eliminate pattern contribu-
tions to the E- and H-plane patterns. The slot length determines the H-plane pattern.
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FIGURE 6-1 Fringing electric fields around microstrip patches: (a) square; (b) circular. (From
L. Diaz and T. A. Milligan, Antenna Engineering Using Physical Optics, Figs. 3.12 and 3.19,
© 1996 Artech House, Inc.).

The H-plane of the slot has the same pattern as the E-plane of a dipole and produces
a null along its axis. Figure 6-3 illustrates the pattern of a patch on an infinite ground
plane using a free-space substrate. The two-element slot array in the E-plane gener-
ates a null along the ground plane because the elements are spaced A/2. The H-plane
dashed curve shows the null along the ground plane due to the polarization of the slots.
The light curves give the Huygens source polarization (Section 1-11.2) patterns in the
diagonal planes. The antenna radiates cross-polarization (dashed curve) in this plane
from the combination of separated magnetic currents along the resonant-length sides
and from the unbalance in the beamwidths in the principal planes.

When we design a microstrip patch on a dielectric substrate, the size reduction
brings the two slots closer together and widens the E-plane beamwidth and eliminates
its null along the ground plane. Figure 6-4 illustrates the pattern of a patch designed for
a substrate with ¢, = 2.2. The H-plane pattern retains its null along the ground plane
due to the slot pattern. The cross-polarization of the Huygens source in the diagonal
plane increases because of the increased difference between the beamwidths of the
principal plane patterns. Table 6-1 gives the directivity of a square and circular patch
on an infinite ground plane found by integrating the pattern. The range of directivity
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FIGURE 6-2 Equivalent magnetic currents on the edges of microstrip patches: (a) square;
(b) circular.

of a patch is limited. Increasing the width of a rectangular patch increases directivity
by shrinking the H-plane beamwidth.

We gain some control of the pattern by placing the patch on a finite ground plane.
Figure 6-5 shows the pattern of a square patch on a 2.21 dielectric constant substrate
when located on circular disks 5A, 2X, and 1A in diameter. On a 5A ground plane,
edge diffraction adds ripple to the pattern. As the ground plane increases, the angular
separation between the ripples decreases, due to the increased array size of the radiation
from the two edges. The H-plane pattern widens significantly for 11- and 2)\-diameter
ground planes, as the limited ground plane can no longer support the currents that
make the patch edge radiate like a slot. Although the principal-plane beamwidths are
more nearly equal for the patch on the 2A-diameter disk, the cross-polarization in the
diagonal plane increases relative to the pattern on the infinite ground plane. The 1A
ground plane increases the gain of the patch by about 1dB relative to the patch on an
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FIGURE 6-3 Patterns of microstrip patch on a free-space substrate mounted on an infinite
ground plane.

Diagonal

FIGURE 6-4 Patterns of microstrip patch on a dielectric substrate &, = 2.2 over an infinite
ground plane.

TABLE 6-1 Estimated Directivity of Square and
Circular Microstrip Patches on a Large Ground

Plane
Dielectric Square Circular
Constant Patch (dB) Patch (dB)
1.0 8.4 9.8
2.0 7.7 7.6
3.0 7.2 6.7
4.0 7.0 6.2
6.0 6.7 5.8
8.0 6.5 55
10.0 6.4 54

16.0 6.3 5.1




MICROSTRIP ANTENNA PATTERNS 291

180
(b)

FIGURE 6-5 Patterns of microstrip patches with dielectric substrate ¢, = 2.2 mounted over
finite circular ground planes: (a) 5\ diameter; (b) 2\ diameter. (continued)
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infinite ground plane. In this case the edge diffractions add constructively to narrow
the beamwidths. We can take advantage of the nearly equal E- and H-plane patterns in
the forward hemisphere to produce a pattern with excellent circular polarization over
the entire hemisphere when we feed the patch for circular polarization. Figure 6-6
gives the circular polarization pattern when the patch is fed in two spots with equal
signals phased 90° apart. The cross-polarization is 13 dB below the co-polarization
at & = 90° in the principal planes and —7dB in the diagonal plane. We retain these
excellent polarization characteristics over a large ground plane if we place the finite
ground plane on a 1A or greater pedestal above the ground plane.

6-2 MICROSTRIP PATCH BANDWIDTH
AND SURFACE-WAVE EFFICIENCY

Microstrip patches radiate from the currents induced on the patch or equivalently, the
magnetic currents around the periphery of the patch and from surface waves induced
in the dielectric slab. The surface waves radiate when they reach the edges of the
substrate and their radiation contributes to the normal patch radiation. The fringing
fields from the patch to the ground plane readily excite the lowest-order surface-wave
TMp mode that has no low frequency cutoff. Any thickness dielectric slab supports
this mode. We can control the surface-wave radiation by limiting the substrate area or
by adding etched photonic bandgap patterns to the open areas of the substrate, but gen-
erally, surface waves are undesirable. As the substrate thickness or dielectric constant
increases, the ratio of the power in surface waves increases. When we calculate the
microstrip patch antenna impedance bandwidth, we must include the directly radiated
power and the surface-wave power. For most cases we consider surface-wave radiation
as reducing radiation efficiency, but for a single patch on a substrate with limited area,
its radiation can add constructively. We eliminate surface waves by using metal plate
patches without dielectric substrates or low-density foam supports of the patch. Surface
waves are bound to the dielectric similar to any transmission line except that the field
decays exponentially in the direction normal to the surface. Because the surface wave
is excited along the finite edges of the patch, it spreads in the horizontal plane. The
radiation spreads like a two-dimensional wave and the fields decay as 1//r, where r
is the horizontal distance from the edge. This is a far-field approximation, and close
to the edge it is a near-field problem. Unfortunately, these surface waves increase the
coupling between patches fabricated on the same substrate.

Simple formulas have been derived for the impedance bandwidth of rectangular
patches that include the surface-wave loss [5]. Since substrates can be both electric
and magnetic, we define the index of refraction of a patch substrate that includes both
parameters: n = /¢, u,. The idea is that the ratio of space-wave radiation to surface-
wave radiation can be found for any small antenna mounted on the substrate and we
can then apply it to a patch. By integrating the power density in the radiation from a
horizontal Hertzian (incremental) dipole spaced the substrate thickness over a ground
plane, we obtain the space-wave radiated power in closed form given the substrate
thickness / and the free-space propagation constant k:

Pl ~ I (kh)* - 20 u2C,

1 04 (6-1)
¢ =1 —;-FF
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We express the current on the patch as an integral of Hertzian dipoles. The surface-
wave power generated in the substrate by the Hertzian dipole can be simplified when
the substrate is thin:

1 3
P&y = K2 (kh)® - 157} (1 — —2) (6-2)
n

We define the surface-wave radiation efficiency by the ratio of radiated power to
total power:
P! 4C

T P+ Pl,  4C, +3mkhp, (1 — 1/n?)3

nsw (6-3)

We relate the power radiated by a patch to a Hertzian dipole by integrating the surface
current on the patch consisting of a distribution of small dipoles to calculate the total
space-wave power of the patch:

2

Pg = Pymi, = Pq / / Jsdx dy (6-4)
N

For a rectangular patch the ratio of Py to Pl'émgq, p, can be approximated by a simple

formula given the resonant length L, the width W, and the propagation constant k:

0.16605(k W)2 N 0.02283(kW)*  0.09142(kL)?
20 560 10

The 2:1 VSWR of the rectangular patch is related to the quality factor Q that includes
the space- and surface-wave radiations:
1 16C 1 W
BW = =P 22 (6-6)
«/E 0 3«/2 nNsw &r Ao L
Figure 6-7 plots the 2: 1 VSWR bandwidth given by Eq. (6-6) for common substrates
versus the free-space thickness in wavelengths and includes the radiation due to surface
waves. The surface-wave radiation found using Eq. (6-3) becomes a significant part
of the total radiation as the substrate thickness increases or the dielectric constant
increases, as shown in Figure 6-8 of the surface-wave loss.
For a single resonator circuit model for a patch, Eq. (6-6) computes bandwidth from
the Q and the allowable input VSWR:
VSWR — 1 VSWR — 1

BW=—"—_ o Q=— (6-7)
0+ VSWR BW+/VSWR

We determine bandwidth at different VSWR levels by manipulating Eq. (6-7):
BW, (VSWR; — 1){/VSWR,
BW, (VSWR, — 1)/VSWR,

Quality factor Q is another way of expressing efficiency. The Q used in Eq. (6-6) is
the combination of the space-wave radiation Qx and the surface-wave radiation Qgw:

L_ 1 _ 1 1 _ PutPu
0 Orad Or Osw wWr

p=1- (6-5)

(6-8)
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FIGURE 6-8 Surface-wave loss of microstrip patches versus substrate thickness for common
substrate dielectric constants.

Wy is the energy stored in the patch and the surface wave and w = 2n f, the radian
frequency. Equation (6-3) can be expressed in terms of Q:

Nsw =

Q _ O

 Or
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The surface wave is not a dissipation loss, but potentially an uncontrolled radiation.
Dielectric and conductor losses increase the impedance bandwidth of the patch, but
reduce its gain. We express these losses as Q to compute patch efficiency. Given the
dielectric loss tangent, tan §, and the patch conductivity o, we have two more Q terms
that reduce the overall Q of the patch in terms of impedance bandwidth:

1
Qi=— and Q.= hynfeo (6-9)
tan §

The total quality factor Q7 is found from the sum of the inverses:

1 n 1 n 1 n 1
Or QOr Osw Qi 0O
If we attempt to fabricate a patch on a thin substrate, Q; and Q. become commensurate

with the radiation Q. and efficiency suffers. The impedance bandwidth increases due
to the dissipation in the microstrip patch. Figure 6-7 does not include these losses.

(6-10)

Dielectric Slab Surface Wave We consider the dielectric slab surface wave because
it can be excited not only by a microstrip patch but by any wave that passes across
it. The slab binds a portion of the wave and releases it when it diffracts at its edges.
The surface-wave device slows the wave velocity of this wave relative to the space-
wave signal, and when it radiates from the edges it no longer adds in phase with the
space wave. The surface-wave fields decrease exponentially in the direction normal to
the surface, and the exponential rate increases as the binding increases and the wave
propagates more slowly.

A dielectric slab on a ground plane will support TM modes when thin and TE
modes when thick. The TM mode is polarized normal to the slab surface, whereas the
TE mode is polarized parallel to the slab surface. A TM mode requires an inductive
surface such as a corrugated ground plane to bind the wave. While corrugations prevent
propagation between the slots, the wave propagates in the dielectric slab by bouncing
between the two interfaces at an angle with respect to the surfaces. The second surface
can be either free space or a conductor. To solve for the fields, we equate not only
the wave impedance at the boundary but the propagation constants in the two regions
as well.

We deduce the grounded dielectric slab solution from a slab twice as thick in
free space that has an odd-mode electric field excitation on the slab sides. The center
becomes a virtual short circuit for the odd-mode excitation. We divide the space around
the slab into three regions: 1 above the slab, 2 in the slab, and 3 below the slab and
then derive the fields from potential functions [6, p. 129]:

mhx .
Y1 = Ajexp T exp(—jk;z)
2T Py X

sin

Yo = A exp(—jk;z) (6-11)

A
2T Py X
A

27bx .
Y3 = £A; exp — exp(—jk;z)

CoS
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where the sign of Y3 depends on satisfying continuous tangential fields across the
lower slab boundary. The center of the coordinate normal to the slab (x) is the slab
center. Equating the propagation constants and x-directed wave impedances produces
transcendental equations in the transverse propagation constant in the slab p,:

wa\? T pxa\? T p.a 2
\/<7> (81M1—80M0)—< . ) ==+By i npea (6-12)

where By = po/p for TE waves. By = gy/e; for TM waves, o is the radian frequency
(27 f), a is the slab thickness, and & and pu; are the permittivity and permeability of
the slab. We solve for p, [Eq. (6-12)] numerically or graphically and use

T[Tba = \/(%)2 (&1 — Eopto) — (fo)z (6-13)

to determine attenuation constant b and the relative propagation constant P of the slab
surface wave:
k,=Pk=ky1+b> or P=+1+D? (6-14)

For the TMy mode we can use an approximate expression for P instead of solving
Eq. (6-12) numerically when the slab is thin [7]:

Ty
%(z ka)> (6-15)

PP=1+
Equation (6-12) has an infinite number of solutions, corresponding to the multiple
values of the tangent and cotangent functions. Order O corresponds to the tangent
function from 0 to 90°; order 1 corresponds to the cotangent function from 90 to
180°; and so on. Even-mode orders use the tangent function, and odd-mode orders use
the cotangent function. We define the cutoff frequency as the point where o = 0, the
transition between attached and detached waves:

_2a [eip

n-y Mo

Ac -1 (6-16)
The cutoff frequency for the zeroth-order mode is zero. Only the TMy mode has odd
symmetry, required for the grounded slab. The grounded slab supports even-order TM
modes and odd-order TE modes. Equation (6-12) coupled to Eq. (6-13) has been solved
numerically to generate Tables 6-2 and 6-3. Table 6-4 lists the thicknesses of a slab
in free space supporting the TMy mode for a given P. The grounded slab is one-half
the thickness of the values in Table 6-2. Similarly, Table 6-3 lists the thicknesses for
the TE; mode. Equation (6-16) can be solved for the minimum thickness to support
the TE; mode. Below that thickness the waves do not bind to the surface.

Besides microstrip patches, we feed these surfaces from either a small horn or a
parallel-plate transmission line. We match the feed polarization to the mode on the
slab, but the slab binds only part of the power. The rest radiates directly from the
feed or reflects to the feed input. We can feed an ungrounded slab by centering it in
a waveguide. The TE,, waveguide mode excites the TE; slab mode when the mode
velocity determining thickness is in the H-plane. Like the grounded slab with the TM,
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TABLE 6-2 Thickness (1) of a Dielectric Slab Supporting a TM, Mode®

Dielectric Constant

P 221 2.94 4.50 6.00 9.80
1.001 0.02699 0.02152 0.01831 0.01839

1.002 0.03672 0.03041 0.02574 0.02420

1.005 0.05792 0.04784 0.04032 0.03744 0.03446
1.01 0.08162 0.06713 0.05623 0.05195 0.04710
1.02 0.1147 0.09355 0.07746 0.07094 0.06316
1.04 0.1607 0.1289 0.1046 0.09444 0.08180
1.06 0.1956 0.1545 0.1231 0.1099 0.09331
1.08 0.2253 0.1752 0.1374 0.1215 0.1015
1.10 0.2520 0.1930 0.1491 0.1307 0.1078
1.12 0.2770 0.2088 0.1590 0.1384 0.1129
1.14 0.3012 0.2233 0.1677 0.1450 0.1171
1.16 0.3251 0.2369 0.1756 0.1508 0.1208
1.18 0.3493 0.2499 0.1827 0.1560 0.1240
1.20 0.3741 0.2625 0.1894 0.1607 0.1269
1.25 0.4426 0.2934 0.2045 0.1712 0.1329
1.30 0.5282 0.3250 0.2182 0.1803 0.1380
1.35 0.6492 0.3593 0.2314 0.1887 0.1424
1.40 0.3986 0.2444 0.1966 0.1463

“Use half-thickness for a slab on a ground plane.

TABLE 6-3 Thickness (1) of a Dielectric Slab Supporting a TE; Mode*

Dielectric Constant

P 2.21 2.94 4.50 6.00 9.80

1.001 0.4469 0.3689 0.2743 0.2260 0.1701
1.002 0.4720 0.3709 0.2774 0.2272 0.1705
1.005 0.4829 0.3765 0.2770 0.2302 0.1717
1.01 0.4961 0.3843 0.2810 0.2330 0.1736
1.02 0.5164 0.3962 0.2873 0.2373 0.1761
1.04 0.5494 0.4150 0.2968 0.2438 0.1797
1.06 0.5790 0.4313 0.3049 0.2492 0.1825
1.08 0.6078 0.4465 0.3122 0.2540 0.1851
1.10 0.6368 0.4613 0.3191 0.2585 0.1874
1.15 0.7140 0.4982 0.3356 0.2690 0.1928
1.20 0.8046 0.5372 0.3518 0.2790 0.1978
1.25 0.9182 0.5802 0.3683 0.2890 0.2026
1.30 1.0712 0.6291 0.3856 0.2992 0.2073

“Use half-thickness for a slab on a ground plane.

mode, the TEy mode has no cutoff frequency for a free-space slab. Table 6-4 lists the

slab thicknesses for a given relative propagation constant for the TEy mode.
The surface-wave power was found in terms of the relative propagation constant P[7]:
157tk*n?u2(P? — 1)

r

Psw =
) 1 N P2 -1 Ltk 1+n4(P2—1)
n A
/P2 — 1 n2 — p2 n2 — p2

(6-17)
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TABLE 6-4 Thickness (1¢) of a Dielectric Slab Supporting a TE, Mode

Dielectric Constant

P 221 2.94 4.50 6.00 9.80
1.001 0.01274 0.00994

1.002 0.01684 0.01174 0.00661 0.00410 0.00250
1.005 0.02649 0.01666 0.00920 0.00638 0.00364
1.01 0.03772 0.02341 0.01289 0.00905 0.00514
1.02 0.05409 0.03345 0.01846 0.01286 0.00729
1.04 0.07872 0.04823 0.02640 0.01839 0.01040
1.06 0.09935 0.06027 0.03275 0.02276 0.01284
1.08 0.1184 0.07104 0.03832 0.02656 0.01494
1.10 0.1368 0.08113 0.04343 0.03002 0.01684
1.15 0.1833 0.1051 0.05507 0.03779 0.02106
1.20 0.2348 0.1290 0.06595 0.04489 0.02483
1.25 0.2968 0.1542 0.07661 0.05168 0.02835

We combine Eq. (6-1) for the space-wave power with Eq. (6-17) for the surface-wave
power to calculate efficiency in the same manner as Eq. (6-3). The results are similar.

6-3 RECTANGULAR MICROSTRIP PATCH ANTENNA

Although design equations will be given below for single-layer rectangular and circular
patches, serious design work should use one of the excellent available commercial
design codes [8]. Their use reduces the need to modify the final dimensions using a
knife to remove metal or metal tape to increase the patches. Antennas can be built
with tuning tabs, but the labor to trim these increases cost. Tuning tabs are unsuitable
for arrays when the input port to individual antennas cannot be accessed. As we add
layers to increase bandwidth, a cut-and-try method becomes extremely difficult, and
numerical methods are a necessity.

Rectangular patch antennas can be designed by using a transmission-line model [9]
suitable for moderate bandwidth antennas. Patches with bandwidths of less than 1%
or greater than 4% require a cavity analysis for accurate results, but the transmission-
line model covers most designs. The lowest-order mode, TMg, resonates when the
effective length across the patch is a half-wavelength. Figure 6-9 demonstrates the
patch fed below from a coax along the resonant length. Radiation occurs from the
fringing fields. These fields extend the effective open circuit (magnetic wall) beyond
the edge. The extension is given by [10]

A 0.300 W/H + 0.262
2 _pappfrt /H+ (6-18)
H ear — 0.258 W/H + 0.813

where H is the substrate thickness, W the patch nonresonant width, and & the effective
dielectric constant of a microstrip transmission line the same width as the patch.
A suitable approximation for &g is given by [11]

&+ 1 8,—1( 10H>‘1/2
+

= 14+ — 6-19
Eeff > 5 + (6-19)

w
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FIGURE 6-9 Coax-fed microstrip patch antenna.

where ¢, is the substrate dielectric constant. The transmission-line model represents
the patch as a low-impedance microstrip line whose width determines the impedance
and effective dielectric constant. A combination of parallel-plate radiation conductance
and capacitive susceptance loads both radiating edges of the patch.

Harrington [6, p. 183] gives the radiation conductance for a parallel-plate radiator as

G="2
nAo

(6-20)

144 . (kH)?
-]

where A is the free-space wavelength. The capacitive susceptance relates to the effec-
tive strip extension:

AW
B = 0.01668— — o5t (6-21)
H A\

Example Design a square microstrip patch antenna at 3 GHz on a 1.6-mm substrate
with a dielectric constant of 2.55 (woven Teflon fiberglass). The patch will be approx-
imately a half-wavelength long in the dielectric.
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Assume at first that the width is A/2.

By Eq. (6-19), g¢r = 2.405. On substituting that value into Eq. (6-18), we obtain the
effective cutback on each edge; A = 0.81 mm. The resonant length is

C
2f\/ Eeff

When we use this length as the width (square patch) to calculate the effective dielectric
constant, we obtain 2.403, very close to the initial value. We can iterate it once more
and obtain 30.64 mm for the resonant length. The input conductance of the patch fed
on the edge will be twice the conductance of one of the edge slots [Eq. (6-20)]:

—2A = 30.62mm

30.64 mm [27(1.6)/1001?
_ My = L 0 55ms
120(100 mm) 24
1
R=— =196
2G

A microstrip feeding line can be attached to the center of one of the radiating edges
but 50-Q transmission lines become inconveniently wide on low-dielectric-constant
substrates. More convenient, 100-Q2 narrower lines have about the same low loss and are
generally used in feed networks. To transform the 196-€2 input resistance of the example
above to 100 2, we use a 140-Q quarter-wavelength transformer. The bandwidth of
the transformer far exceeds that of the antenna.

In the example above, we have a square patch. Why doesn’t the antenna radiate
from the other two edges? We can equally well say that the patch is a transmission
line in the other direction. The equal distances from the feed point to the nonradiating
edges produce equal fields from the patch to ground. Equal fields on the edges set up
a magnetic wall (virtual open circuit) through the centered feed line and create a poor
impedance match to the feed.

We expand the radiating edge fields in an odd mode, since the power traveling across
the patch loses 180° of phase. The odd mode places a virtual short circuit halfway
through the patch. A shorting pin through the center (Figure 6-9) has no effect on
radiation or impedance, but it allows a low-frequency grounding of the antenna. The
patch can be fed by a coax line from underneath (Figure 6-9). The impedance varies
from zero in the center to the edge resistance approximately as

X L
RizResinz— 0<x

< — 6-22
L -2 ( )

where R; is the input resistance, R, the input resistance at the edge, and x the

distance from the patch center. The feed location does not significantly affect the
resonant frequency. By using Eq. (6-22), we locate the feed point given the desired

input impedance:
L R;
x=—sin"! [ (6-23)
b R,
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Compute the 50-€2 feed point in the example above:

3064 . _, /50
sin — =5.16 mm
196

X =
e

The feed pin currents add to the pattern by radiating a monopole pattern. Figure 6-10
shows this radiation for a patch using a free-space substrate where the E-plane radiating
edges are spaced A/2. The pattern of Figure 6-10 has a null along the ground plane in
the E-plane, but the monopole radiation increases the radiation along the ground plane.
On one side the radiation adds and on the other it subtracts from the E-plane pattern
to form a null tilted above the ground plane. The H-plane pattern now contains cross-
polarization. We can reduce the monopole radiation by feeding the patch at a second
port located an equal distance from the center on the opposite side. This requires
an external feed network that divides the power equally between the two ports with
a 180° phase difference. The problem with this feed arrangement is that significant
power is coupled between the two feeds in the equivalent microwave circuit of the
patch. The estimated value of —6 dB coupling between the ports causes a portion of the
input power to be dissipated in the second port. At this level the patch efficiency drops
1.25 dB. We can reduce the monopole radiation by coupling to a second short-circuited
probe to the patch instead of directly feeding it. The gap between the second probe
and the patch is adjusted until the antenna radiates minimum cross-polarization in the
H-plane. This uses the microstrip patch as the feed network, and the second probe has
no resistive load to dissipate power.

The feed probe across the microstrip patch substrate is a series inductor at the input.
Higher-order modes excited in the patch by this feeding method add to the inductive
component of the antenna. Below resonance, the antenna is inductive and has near-
zero resistance. As the frequency increases, the inductance and resistance grow as
the parallel resonance is approached. Above the resonant frequency, the antenna is
capacitive as the impedance sweeps clockwise around the Smith chart (Figure 6-11)
and finally back to a slight inductive component near a short circuit. Increasing the

FIGURE 6-10 Pattern of coax-fed, microstrip patch including feed pin radiation for free-space
substrate.



RECTANGULAR MICROSTRIP PATCH ANTENNA 303

FIGURE 6-11 Smith chart frequency response of under-, critically, and overcoupled patches
as the feed point moves toward one radiating edge of a rectangular patch.

input resistance by changing the feed point causes the resonant frequency response
circle to grow on the Smith chart and cross the resistance line at a higher level. We
call the left-hand curve the undercoupled case because the sweep of the curve fails
to enclose the center of the chart. The center curve is critically coupled and the right
curve is the overcoupled case. This general impedance response also holds for circular
patches. We use these terms for all resonance curves when they sweep around or toward
the Smith chart center from any peripheral point.

Figure 6-12 plots the Smith chart for a design with a patch on a 0.05A-thick substrate
with dielectric constant 1.1 that includes the inductance of the feed pin. The response
locus lies above the real axis and is always inductive. We can tune this impedance
locus by adding a series capacitor at the input with a reactance —j50 at the center
frequency. The series capacitor moves the locus down until it sweeps around the
center of the chart in an overcoupled response. Figure 6-13 shows implementation of
the capacitor as a disk on the end of the feed pin. The pin passes through a hole
in the patch so that the only connection is through the capacitor disk. The disk can
be placed below the patch on a separate substrate in a multiple-layer construction.
Other configurations use an annular ring capacitor etching in the patch at the feed
point for small capacitors. Adding to this a series inductor and adjusting the series
capacitor improves the impedance match over a larger frequency range, as shown in
Figure 6-14, where the locus encircles the origin [12]. The patch with the single added
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FIGURE 6-12 Impedance improvement by adding a series capacitor to a patch on a thick
substrate.

Patch Disk
Capacitor

Feed Pin

Akl Sy

Coax
Input

FIGURE 6-13 Cross section of a probe-fed patch with an added series capacitor.

series capacitor has a 9.1% 10-dB return-loss bandwidth while adjusting the series
capacitor, and adding a series inductor increases the impedance bandwidth to 15.4%.
Matching networks have limited ability to add resonances to broadband the impedance
match, but construction becomes difficult. Later, we will obtain extra resonances by
adding antenna elements.

We can feed patches from the edge by using an inset microstrip line as shown in
Figure 6-15, where the gap on either side of the microstrip line equals its width. A
FDTD analysis shows that the inset disturbs the transmission line or cavity model
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of a patch with a two-element matching network.

sponse

FIGURE 6-14 Impedance re

FIGURE 6-15 Inset-fed square patch.
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Equation (6-24) is an approximate solution because at x = 0, the resistance remains
finite. We locate the feed from the equation using a radian angle measure:

L R\
x = —sin! (—) (6-25)
B

Compute the 50-€2 feed point in the example above:

30.64 . _, [ 50 \°%
X = sin — =7.71 mm
T 196

The inset distance (7.3 mm) is less than the distance of the probe (9.8 mm) from
the edge.

Aperture Feed [14,15] A microstrip patch is a planar resonant cavity with open-
circuited sidewalls that leak power in radiation. We can also think of the rectangular
patch operating in the lowest-order mode as a low-impedance transmission line with
end susceptance and radiation conductance. Both models predict a resonant structure
with significant Q. Resonant cavities are readily excited by coupling to a transmission
line through an aperture or by direct feeding from a transmission line. The Q of the
resonant cavity limits the excitation fields to one of the modes. We can expand the
excitation in the cavity modes, but the lowest-order mode is usually the most significant
and contains most of the stored energy. We generally consider the voltage distribution
in a patch with its null plane located halfway across the patch through the center.
Whether we consider it as a cavity or a transmission line the standing-wave voltage
has a standing-wave current associated with it. This current is out of phase with the
voltage and its peak occurs along the virtual short circuit through the centerline. Along
the resonant length the current has a cosinusoidal distribution that vanishes at the
radiating edges in a single half-cycle for the lowest-order mode. The current has a
uniform distribution along the patch width.

We produce maximum coupling to a patch through a slot by distorting the currents
in the ground plane of the patch where they are maximum in the center of the patch.
To first order the currents flow along the resonant length. This means that we align the
slot perpendicular to the current flow for maximum excitation in the same manner as
slots in waveguides (Section 5-24). To excite the slot we pass a microstrip transmission
line across it perpendicularly. This leads to a three-layer structure. The patch is located
on the top layer. Its ground plane contains a coupling aperture usually placed under
the center of the patch for maximum coupling. The third layer contains a microstrip
transmission using the same ground plane as the patch and located under the center
of the slot to maximize coupling. Figure 6-16a shows an exploded view of the patch,
ground with its aperture, and the microstrip transmission line flipped over relative to
the patch. Figure 6-16b gives the general parameters associated with the slot aperture.
Although x,; and y,, are usually zero to maximize coupling, the patch current distri-
bution tells us how the coupling varies with slot location. Because the current in the
ground plane is uniform across the patch width W, coupling is independent of x,; until
the slot starts to overlap the edge of the patch. The cosinusoidal distribution current
distribution along the resonant length direction L means that the coupling falls off
slowly as y,, is moved off zero. The sign of y,; does not matter because the distri-
bution is an even function. The slow variation of current near the patch center means
that the slot location has a loose tolerance.
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FIGURE 6-16 Aperture feed of square patch. (From [15], Fig. 1, © 1986 IEEE.)

The microstrip transmission line excites the slot (aperture) from a standing-wave
with its maximum current located at the slot. We maximize the standing-wave current
by either using a shorting via from the microstrip line to the ground plane or by using
a quarter-wave open-circuited transmission line stub of length L. L, will be less than
a quarter-wave in the effective dielectric constant of the microstrip line because the
open-circuit end has fringing capacitance and its capacitance must overcome the higher-
order modes of the microstrip patch, which load the input inductively. The reactance
of the stub, a series load to the input, is given by the equation

Zg = —jZycot(kerLy)

where Z; is the characteristic impedance of the microstrip feed line, k. the effective

propagation constant in the microstrip substrate, and L, the stub length ~0.22\.¢.
We increase the coupling to the patch resonant cavity by increasing the aperture

size. Figure 6-17 shows the Smith chart variation with aperture size as the coupling
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FIGURE 6-17 Effect of aperture size on coupling to a patch where larger openings move the
response to the right.

varies left to right as undercoupled, critically coupled, and overcoupled. When we
increase the bandwidth, we lower the Q, and the coupling aperture size must increase.
Waterhouse [8] suggests starting with a slot about one-half the patch width and using a
commercial code to analyze the response while adjusting dimensions before fabrication.
We control the rotational position on the Smith chart by varying the open-circuited stub
length. Shorter lengths, below A/4, increase the capacitive reactance and the coupling
loop will rotate around a constant-resistance circle with its diameter determined by the
aperture size, as shown in Figure 6-18.

Figure 6-19 gives aperture shapes in order of increasing coupling. The longer slot of
(b) compared to slot (a) increases coupling. Widening the aperture as in (c¢) increases
coupling relative to (a). The H-shaped slot has a more uniform distribution along the
horizontal slot and increased coupling. The bowtie and hourglass apertures increase
coupling from a consideration of increased path length around the opening. The smooth
curve of the hourglass reduces current discontinuities at the edges and increases cou-
pling [16, pp. 158—159].

Aperture feeding eliminates the vertical pin structure in the microstrip patch and
eases construction but at the cost of a multiple-layer etching. The elimination of the
vertical pin removes the added monopole pattern, which increases cross-polarization.
When the patch is edge fed, whether directly or inset, the substrate for good patch
radiation does not match the one needed for good microstrip lines. With an aperture-
fed patch, each structure can use its optimum substrate, because they are independent
and connected only through the aperture. As we try to feed broadband patches, the
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FIGURE 6-18 Effect of varying length of an open-circuited stub in an aperture-fed patch
when critically coupled.
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FIGURE 6-19 Aperture shapes to increase coupling and bandwidth. (From [16], Fig. 4-29, ©
2003 Artech House, Inc.)
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Q decreases and the aperture size grows. This slot, although below a resonant size,
increases its radiation and decreases the front-to-back ratio because it radiates equally
on both sides. One solution is to enclose the microstrip line in a box to prevent
slot radiation on the back side. If we use a high-dielectric-constant substrate for the
microstrip line, the coupling through the aperture remains high, but the second ground
plane of the microstrip will reduce the coupling. The slot aperture adds a pole to the
patch circuit that can be used to broadband the impedance response. To use this pole
effectively, we must increase the aperture size until it becomes a significant radiator.
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6-4 QUARTER-WAVE PATCH ANTENNA

When operation is in the lowest mode, a virtual short circuit forms through a plane
centered between the two radiating edges. We can make an antenna by using half the
patch and supplying the short circuit (Figure 6-20). The E-plane pattern broadens to
that of a single slot. The resonant length is about a quarter-wavelength in the dielectric
of the substrate. We use the effective dielectric constant g of a microstrip line of
patch width W and A given by Eq. (6-18) to determine the resonant length L of the

quarter-wave patch:
L A

= —A
2 4w

We can implement the short circuit with a series of pins or etched vias between the
ground plane and the patch. These add an inductive component to the transmission-line
model of the antenna. The effective shorting plane occurs further along the transmission
line. The equivalent extra length Al is found from the parallel-plate circuit model of
a row of evenly spaced pins [17, p. 104]. Given the pin center spacing S, their radius
r, and the wavelength in the dielectric A; = Ao/,/¢,, we compute the patch-length
reduction from the equation

S S 27\ 2 S\?
A= — (22} foe01 (2 (6-27)
27 27r S A

We have only the conductance and susceptance of a single edge that doubles the res-
onant resistance at the edge as compared with the full patch. It becomes difficult to
feed the antenna from microstrip because this raises the quarter-wavelength transformer
impedance and requires narrower lines. We can increase the edge width to reduce the
edge input resistance, but the antenna is usually fed from underneath. Equation (6-23)
gives the approximate feed location measured from the short circuit. The resonant fre-
quency shifts slightly as the feed point moves. During tuning for impedance match, the
length of the cavity will have to be adjusted to maintain the desired resonant frequency.
Quarter-wave and full-patch antennas have the same Q. A half-patch antenna has half

(6-26)
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FIGURE 6-20 Quarter-wave patch.
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the radiation conductance but only half the stored energy of a full-patch antenna. Its
bandwidth is approximately the same as that of the full patch.

Example Design a half-patch antenna at 5GHz on a 0.8-mm-thick substrate (¢, =
2.21) with a radiating width of 0.75A.

The edge width is 0.75(300 mm)/5 = 45 mm. By using Eq. (6-19), we compute the
effective dielectric constant in the cavity: ge = 2.16. Equation (6-18) gives us the
cutback for fringing fields: A = 0.42 mm. The resonant length becomes

L A
— = — A =10.20-0.42 =9.78 mm
2 44 / Eeff
The radiation conductance from the single edge is [Eq. (6-20)]
45
= =6.25mS or R =160
120(60)

The 50-2 feed point is found from Eq. (6-23):

1956 . _, /50
x = sin — =3.69 mm
1A 160

where x is the distance from the short.

The short circuit of this antenna is quite critical. The low impedance of the microstrip
cavity raises the currents in the short circuit. Without a good low-impedance short, the
antenna will detune and have spurious radiation. If the antenna is made from a machined
cavity, careful attention must be paid to the junction between the top plate and the
cavity to assure good electrical contact.

Figure 6-21 shows the calculated pattern of a quarter-wave patch on a free-space
substrate 0.04A thick on an infinite ground plane. The antenna radiates primarily from
the single edge located opposite the short-circuited edge. A vertical probe feeds the

FIGURE 6-21 Pattern of a quarter-wave patch on a free-space substrate.
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FIGURE 6-22 Pattern of a quarter-wave patch mounted on (a) 2A- and (b) 10Xi-diameter
ground planes.
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antenna directly. The E-plane has a broad, nearly constant pattern. Radiation from
current on the probe and shorting pins adds to positive angle radiation of the equiv-
alent single slot while subtracting in the opposite direction. The H-plane pattern
(dashed curve) retains its null along the ground plane. The light-line curve gives
the cross-polarization in the H-plane. The feed probe and shorting pin currents pro-
duce a pattern similar to that from a monopole. The model that uses equivalent
magnetic currents fails to predict the high radiation from these currents. When the
quarter-wave patch is mounted on a finite ground plane, it exhibits behavior simi-
lar to that of a monopole. Figure 6-22a,b plots the pattern when it is mounted on
2X- and 10A-diameter ground planes. These show a monopole-type pattern, where
radiation spreads readily behind the ground plane. Currents flowing in the feed pin
and shorting wall distort the E-plane and cause asymmetry. The magnetic currents
flowing along the side slots no longer cancel as in the square patch and increase
cross-polarization.

If we close off the nonradiating edges with metal walls, the walls convert the
parallel-plate line into a waveguide and we use the waveguide propagation constant to
calculate the quarter-wavelength cavity depth. The slot fields vanish on the ends and
establish a sinusoidal slot distribution. We can offset the feed toward both the back wall
and the sidewall to reduce the input impedance. The peak voltage (minimum current
and peak resistance) occurs at the slot center. Figure 6-23 illustrates the pattern of
the waveguide quarter-wave patch on an infinite ground plane. The sidewalls reduce
the monopole radiation, and the H-plane cross-polarization is reduced compared to a
quarter-wave patch. When mounted on a 2A-diameter disk, centered on the feed pin,
the pattern (Figure 6-24) exhibits lower-level radiation in the backlobe because the
monopole pattern has been reduced. The high radiation level at the disk edges still
causes considerable edge diffraction in the E-plane.

6-5 CIRCULAR MICROSTRIP PATCH

In some applications, a circular patch fits in the available space better than a rect-
angular one. In a triangularly spaced array, they maintain a more uniform element

FIGURE 6-23 Pattern of a quarter-wave waveguide patch.
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FIGURE 6-24 Quarter-wave waveguide patch mounted on a 2A-diameter disk.

environment. No suitable transmission-line model presents itself, and the cavity model
must determine the resonant frequency and bandwidth. The cutoff frequencies of TE
modes of circular waveguides give the resonant frequencies of circular patch antennas.
The patch with its magnetic walls and TM modes is the dual of the waveguide. The
resonant frequencies are given by

i
_ anc
2T[aeff4/8r

where X,;p are the zeros of the derivative of the Bessel function J,(x) of order n, as
is true of TE-mode circular waveguides. The term a.i is an effective radius of the
patch [18]:

fnp (6'28)

2H Ta
P (1n S 1.7726) (6-29)

Tae,

where a is the physical radius and H is the substrate thickness. Using the effective
radius gives the resonant frequency within 2.5%.
We combine Egs. (6-28) and (6-29) to determine radius to give a particular resonant
frequency:
X,,C

721_[]% NG (6-30)

deff =
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Since a and a. are nearly the same, we can iterate Eq. (6-29) to compute a, the
physical radius [19, p. 119]:

deff

a =
\/ | + 2H /mag, [In (na/2H) + 1.7726]

(6-31)

We start by using ag for a in Eq. (6-31), which converges rapidly. The lowest-order
mode, TM;;, uses X'11 (1.84118) and produces a linearly polarized field similar to
a square patch. The TMy; mode (X, = 3.83171) produces a monopole-type pattern
from a uniform edge fringing field.

Example Design a circular microstrip patch antenna (TM;; mode) at 3GHz on a
1.6-mm substrate that has a dielectric constant of 2.55 (woven Teflon fiberglass).
We calculate the effective radius from Eq. (6-30):

1.84118(300 x 10° mm/s)
27t(3 x 10° Hz)+/2.55

= 18.35 mm

deff =

The physical radius will be slightly less. By using aes in the denominator of Eq. (6-
31), we obtain a physical radius: a = 17.48 mm. We can then substitute this back into
Eq. (6-31) and obtain @ = 17.45 mm. Equation (6-31) converges in two iterations to a
reasonable tolerance, since another iteration gives the same value. Actually, a single
iteration gives the value within 0.2% on a formula accurate to only 2.5%.

The fields of the TM;; mode produce a virtual short circuit at the center of the
patch. We can reinforce the short circuit with a pin soldered between the patch and
ground. The radial line along which the feed is placed determines the direction of
the linear polarization. The nonuniform radiation along its edge gives a larger edge
impedance than the square patch. Experience shows that the 50-2 feed point is located
from the center at about one-third the radius. Experiments, actual or numerical, will
be required to locate the proper point. Use a network analyzer with a Smith chart
display to measure the input impedance. If the resonance circle swings around the
origin, the impedance is too high (overcoupled). Move the feed toward the center. A
scalar return-loss display cannot give you the direction of movement required. Like
the rectangular patch, mismatching the impedance at center frequency to about 652
increases the bandwidth slightly. Derneryd [20] gives an approximate expression for
the radial impedance variation:

J2 (k.
Rin =R, ‘2( o) (6-32)
Jl (kea)

where R, is the edge resistance, p the radial distance, and J; the Bessel function of the
first kind. k; is the propagation constant in the substrate dielectric constant: k, = k./e,.
Figure 6-25 gives the 2:1 VSWR bandwidth of a circular patch on various substrates
as a function of the substrate thickness. It has a slightly smaller bandwidth than that
of a square patch because it has a smaller volume. The curves on Figure 6-25 include
surface-wave radiation (or losses).
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FIGURE 6-25 2:1 VSWR bandwidth of circular microstrip patches versus substrate thickness
in free-space wavelengths, including surface-wave radiation.

6-6 CIRCULARLY POLARIZED PATCH ANTENNAS

Figure 6-26 show methods of achieving circular polarization with square patches fed
with two inputs. The patches are fed by equal signals 90° out of phase. The branchline
hybrid (Figure 6-26a) consists of four transmission lines connected in a square. The
hybrid shown (100-Q2 system) produces equal outputs 90° out of phase at center fre-
quency. The two inputs produce patterns with opposite senses of circular polarization.
Both the VSWR and axial ratio bandwidths far exceed the singly fed patch bandwidth.
Reflections due to the patch mismatch are routed to the opposite input. Patch input
reflections, undetected at the input, reduce the efficiency of the antenna by the same
amount as the singly fed patch mismatches. The antenna can be fed from below in two
places by using a coupled line hybrid, but it suffers from the same efficiency problem.

The cross-fed antenna (Figure 6-26b) splits the signal to feed both edges. A quarter-
wavelength-longer line provides the extra 90° phase shift to give circular polarization.
Shifting the impedance from one input through a quarter-wavelength line before adding
the two in shunt cancels some of the reflection from the second line and increases the
impedance bandwidth. The impedance bandwidth approximately doubles compared to
the singly fed patch. The 6-dB axial ratio bandwidth roughly equals the singly fed
square-patch bandwidth. The polarization loss (0.5 dB) of a 6-dB axial ratio equals the
2:1 VSWR mismatch loss.

The antennas in Figure 6-27 use asymmetries to perturb the resonance frequencies of
two possible modes and achieve circular polarization [21]. The approximately square
patches have been divided into two groups: type A, fed along the centerline, and
type B, fed along the diagonal. All these antennas radiate RHC. We can understand the
operation of these patches from an analysis of the turnstile dipole antenna (Figure 6-28).
The orthogonal dipoles could be of equal length and fed from a 90° hybrid to achieve
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RHC =

LHC

-90° LHC

FIGURE 6-26 Dual-fed circularly polarized patch antennas: (a) branchline hybrid fed; (b)
cross-fed patch.
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FIGURE 6-27 Classes of perturbed microstrip patches to generate circular polarization from
a single feed. (From R. Garg et al., Microstrip Patch Handbook, Fig. 8-15, © 1999 Artech
House, Inc.)

circular polarization (like the patch in Figure 6-26a). Instead, the lengths are changed
to shift the phase of each dipole by 45° at resonance. If we lengthen the dipole beyond
resonance, the input impedance becomes inductive. The current becomes

-V _ V(R — jX>)
Ry + jX> R+ X3
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FIGURE 6-28 Turnstile dipole antenna.

The radiated field phase decreases relative to the resonant-length dipole. Shortening
the dipole from resonance increases the far-field phase. We adjust the lengths until the
phase difference of the radiated fields is 90° and the susceptances from the two dipoles
cancel at center frequency. The combination of the two modes produces a Smith chart
response with a small loop or kink (see Figure 5-13). The best circular polarization
occurs at the frequency of the kink, and the response degrades below and above this
frequency. The axial ratio bandwidth is far less than the impedance bandwidth, because
the combination of the two modes causes a cancellation of transmission-line reflections
from the two modes and increases the impedance bandwidth. The phase required for
good circular polarization changes rapidly.

We denote the total change in area A S to achieve two resonances for a normal patch
area of § and it is proportional to the Q. A type A patch, fed along the square patch
axis, requires less area change than a type B patch, fed along the diagonal:

AS 1 AS 1
type Ai— = — type B:— = — (6-33a,b)

S 20 S 0
We achieve the same effect with a patch by perturbing the lengths of a square patch
and feeding both polarizations. An input along the diagonal (type B) feeds all edges
in two separate resonances. The ratio of the edge lengths is found in terms of Q
by a perturbation technique [4]. We rearrange Eq. (6-33b) to derive the ratio of these

lengths:

b—1+] (6-34)
a 0 ]

We calculate resonant frequencies for the two lengths from Eq. (6-34):

__fo _ el L )
fl—m 2=/ 1+Q (6-35)
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Q is related to the VSWR bandwidth by Eq. (6-7). The 3-dB axial ratio bandwidth
of the antenna is limited to 35%/Q or 35% of the frequency difference between f;
and fz.

Example Compute resonant lengths for a corner-fed patch on a 1.6-mm substrate
with &, = 2.55 at 3 GHz.

We have A = 100 mm and thickness/A = 0.016. From Figure 6-7 we read the 2:1
VSWR bandwidth: 1.61%. From Eq. (6-7) we calculate Q:

1
Q=——=439
0.0161+/2
We use Eq. (6-35) to determine the resonant frequencies:
3
fi= ————=2.966 GHz

JT+1/439
fr=3y1+1/43.9 = 3.034 GHz

By using the techniques of Section 6-3, we calculate the resonant lengths: a =
30.27mm, b = 31.01 mm.

All perturbations by small areas in a circular patch can only be type A feeding.
The perturbation equations are related to the circular patch separation constant X,
(1.84118):

AS 1 AS 2
type A:— = type B:—

- S (6-36)
s X0 S X0

A circular patch perturbed into an elliptical patch radiates circular polarization when
fed on a 45° diagonal from the major or minor axis and produces type B feeding. The
ratio of major to minor axes is related to Q [4]:

b_ ., 10887
a Q

with resonant frequencies

S | N (6-37)
h= Astosmg ™ ~=0 0 "

We compute Q by using Eq. (6-7) and read the bandwidths from Figure 6-25 for
circular patches. Use the techniques of Section 6-5 to calculate the physical radius of
the major and minor axes from the frequencies [Eq. (6-35)].

6-7 COMPACT PATCHES

The desire to produce small patches for cellular telephone handset use has lead to the
development of compact designs. The ideal antenna is one whose location the user is
unaware of and which is as small as possible. Because most signals arrive at the user
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after many bounces and edge diffractions, polarization is arbitrary. We do not need to
control the radiation pattern or its polarization carefully and it opens up a range of
possibilities. Shorting pins placed close to the feed pin reduce the patch size to about
%A on a side, but its polarization is poorly controlled. If we can force the current to take
a longer path along the resonant-length path, we can shrink the overall size. We etch
notches in the patch to make the current wander or use various spiral-wound networks
on a flat substrate. Three-dimensional solutions consist of folding a patch by using the
vertical direction or some sort of winding around a cylinder. Many variations on these
ideas appear in the literature and in collections of these ideas [16,22,23].

Adding a shorting pin closely spaced to the vertical feed pin (Figure 6-29) greatly
reduces the resonant frequency of a given-size patch and produces a compact patch [24].
The idea is to make the current flow over a longer path from the feed point to the
radiation site; in other words, the transmission line has been folded to make the path
longer in the resonant cavity. We use this concept for all compact patches. In this con-
figuration the resonant wavelength is found from the patch perimeter. Given the width
W and the length L of the patch on a dielectric substrate ¢,, the resonant wavelength
is given by

Ao =4/e (L+ W) (6-38)

which reduces to a square patch A/8 on a side. This patch has one-half the length
and one-fourth the area of a quarter-wave path, with its short circuit along an entire
edge. The circular shorting pin compact patch resonant diameter equals 0.141¢/.,/e,.
Making a patch this small produces highly inductive input impedance, which we can see
by looking at the Smith chart of a coaxial probe-fed patch (Figure 6-12). The curve
sweeps clockwise as the frequency increases. At low frequency (or small size) the
patch is highly inductive. Figure 6-12 shows that using thicker substrates to increase
bandwidth makes the patch impedance even more inductive. The shorting pin next
to the feed pin forms a transmission line with it and adds a capacitive component
to the input impedance that counteracts the patch and feed pin inductance. As the
shorting pin is moved farther away from the feed pin, the capacitance decreases and
the shorting pin becomes an inductive component, as it is in the quarter-wave patch.

YA

Wle s
/'!’" (va Yp)

(Xps' Yps)

(a)

f— [ —~1

Y x

FIGURE 6-29 Compact patch with a shorting pin near the feed. (From [24], Fig. 1, © 1998
IEEE.)
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The recommended position of the shorting pin is 80 to 90% of the distance from the
center to the outer edge and a diameter of 0.0081. You will need to iterate the position
of the feed probe, usually one-half the diameter of the shorting pin, to achieve an
impedance match. Table 6-5 lists the bandwidth achieved versus substrate thickness on
foam, ¢, = 1.07 [25, p. 207].

Figure 6-30 gives the calculated pattern of a shorting pin compact patch on 0.034X
free-space substrate. The broad E-plane pattern has 10-dB dip on the broadside matched
by the H-plane E,; component. The large current in the shorting pin produces a signif-
icant monopole pattern seen in the E, radiation in the H-plane. This small antenna is
a combination of a top-loaded monopole and a patch. Thinner antennas have a lower
pattern dip broadside to the substrate because the monopole is shorter.

The planar inverted F antenna (PIFA) is similar electrically to the shorting pin com-
pact patch. We move the shorting pin to one corner and often make it a small shorting
plate. We locate the feed pin close to the small shorting plate to again form a transmis-
sion line whose capacitance with the feed pin counteracts the inductive component of
the small patch. We use Eq. (6-38) to determine its resonant wavelength. If we rotate
the coordinates so that the shorting plate and diagonal lie on the x-axis, we obtain the
pattern response of Figure 6-30. Since there is practically no difference between the
two antennas, Table 6-5 gives the bandwidth of the PIFA versus thickness [26].

TABLE 6-5 Bandwidth of a Single Shorting Pin
Compact Patch

Bandwidth, Feed-to-Pin
Thickness 2:1 VSWR Center
(o) (%) Distance (Ag)
0.01 1.6 0.0071
0.02 2.2 0.0076
0.03 2.7 0.0081
0.04 34 0.0085
0.05 4.3 0.0101
0.06 5.7 0.0135

FIGURE 6-30 Pattern of a compact patch.
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FIGURE 6-31 Reduced-size microstrip patches using meandered current paths. (From [22],
Fig. 1-3, © 2002 John Wiley & Sons, Inc.)

Modest size reduction can be obtained by making the currents flow along a longer path
along the resonant length. Figure 6-31 shows two planar antennas where slits cut from the
width sides and disrupting the resonant-length path cause wandering of the current. The
bowtie patch also makes the current path longer. These antennas radiate normal patch
patterns with broader beamwidths in the E-plane because the notches bring the radiating
edges closer together. The antennas in Figure 6-32 shrink the resonant length by folding
the antennas vertically. The total length along the path is approximately A/2, but the
radiating edges are closer together. A large number of variations using slots have been
investigated and offer interesting approaches to both shrink the patch size and produce
dual-frequency antennas by using both the patch mode and slot radiation [22].
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FIGURE 6-32 Folding microstrip patches to reduce size. (From [22], Fig. 1-4, © 2002 John
Wiley & Sons, Inc.)
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6-8 DIRECTLY FED STACKED PATCHES

Figure 6-7 illustrates the limited impedance bandwidth achievable from a single-
resonator microstrip patch. When we increase the substrate thickness to widen the
bandwidth, the antenna excites more surface waves (Figure 6-8) difficult to control,
and we accept them as losses. In Section 6-3 we discussed the use of external circuit
elements to improve the impedance response. These have limited usefulness, although
the simple series capacitor input to overcome the inductance of a long feed probe
and the inductive nature of the higher-order modes is easily implemented. These
external elements add poles to the resonant circuit to increase bandwidth. We can
increase the number of poles by adding antenna elements instead. One solution is
to couple to additional patches located around the fed patch on the same substrate
surface. This increases the antenna size and reduces pattern beamwidths. This solution
is difficult to use in an array because the large spacing between elements produces
grating lobes. Stacking patches vertically above the driven patch and coupling to
them electromagnetically produces the best solution in terms of pattern response. The
disadvantage of this approach is the additional fabrication cost. Our discussion of
aperture-coupled patches in Section 6-3 points out that large apertures also add resonant
poles that can increase the bandwidth. These added resonant elements complicate the
design and call for the application of analytical tools instead of a cut-and-try approach.

Although either patch in a two-element stacked patch design can be fed, feeding the
lower element produces a design with minimum feed pin inductance. Aperture coupling
through the ground plane feeds the lower patch directly as well. If we use an edge feed,
we want the input transmission line to be as narrow as possible to reduce radiation
by feeding the lower patch. Initially, we consider the probe-fed stacked patch [27].
A coaxial probe feeds directly a lower substrate of thickness d; and dielectric con-
stant &,; through a hole in the ground plane. Figure 6-12 shows that the feed probe
adds inductance for a thick substrate and the resonant loop is located on the upper
inductive portion of the Smith chart. When we couple the lower patch to an upper
patch with thickness d, and dielectric constant &,;, its circuit response becomes more
inductive. We need to start with the impedance locus of the lower patch to be capac-
itive without the upper patch. This can be achieved by using an overcoupled feed.
Figure 6-11 illustrates the overcoupled patch whose impedance locus sweeps around
the origin of the Smith chart. The inductance of the feed probe rotates these curves
clockwise around the center of the chart and the overcoupled response has significant
capacitive reactance when it sweeps around the origin. If we matched the lower patch
critically, upward movement of the locus due to the coupled patch would reduce the
impedance bandwidth. Figure 6-33 illustrates these design steps. Figure 6-33b shows
that increasing the lower patch thickness leads to a longer feed probe that sweeps
across the center from a more inductive portion of the Smith chart. Adding the second
patch fails to increase the bandwidth relative to the thinner optimum lower patch. The
thickness of the upper patch substrate d, controls the tightness of the resonant loop. A
greater thickness d, produces a tighter loop in the Smith chart response that leads to
a lower VSWR over a narrower bandwidth. Remember that we cannot use Eq. (6-7)
to determine the bandwidth for different VSWR levels because we now have multiple
resonators.

If we use a foam upper substrate, the dielectric constant and thickness of the lower
substrate determines the surface-wave efficiency. Waterhouse [27] used a dielectric



324 MICROSTRIP ANTENNAS

—— Single layer —— Single layer
—+— Stacked —+— Stacked

FIGURE 6-33 Effect of coupling to a second patch: (a) overcoupled single lower patch
response forms resonant loop with the second coupled patch; (b) increasing lower patch thickness
causes rotation on a Smith chart and lower bandwidth. (From [27], Fig. 3, © 1999 IEEE.)

constant of 2.2 for the lower substrate with a thickness of 0.04A, and a foam upper
substrate 0.06A( to achieve optimum bandwidth with acceptable surface-wave losses.
The lower patch was overcoupled so that it swept through the 250-2 resistance point
at resonance. Since the impedance locus sweeps clockwise on the Smith chart as
frequency increases, this resonant point should be slightly below the lower end of the
desired frequency band. We adjust the second substrate thickness to move the resonant
loop on the Smith chart in the vertical direction. As we increase the size of the upper
patch, the loop moves around an arc in the clockwise direction, which we use to center
the impedance response on the Smith chart for optimum bandwidth. This method
produces impedance bandwidths of around 25%. The pattern bandwidth exceeds this
bandwidth and we expect little change in pattern over this frequency range.

Another successful stacked patch fed from a coaxial probe is the hi-lo configuration,
in which a high dielectric substrate (g,; = 10.4) is used for the lower substrate and a
foam (e,, = 1.07) for the upper substrate [25, pp. 178—182]. The upper patch captures
the surface wave of the lower patch and greatly improves the overall efficiency by
radiating this power in a space wave. Although the two patches have different sizes, the
coupling remains sufficient to produce a broadband antenna with impedance bandwidths
approaching 30%. In this design the lower patch is designed for the high dielectric of
the lower substrate with little consideration for the upper patch except for making it
a little overcoupled. The upper patch can be designed using the substrate thickness
and dielectric constant assuming that the high dielectric substrate acts as the ground
plane. When we mount the upper patch over the smaller lower patch, small adjustments
must be made to the dimensions to achieve a 50-2 impedance match. The example
given used a lower substrate thickness of 0.032X( with ¢,; = 10.4, and by Figure 6-8
would have —1.3-dB surface-wave loss. Locating the second patch on a 0.067(-thick
foam substrate directly over the first patch reduced the surface-wave loss to better than
—0.7 dB over the entire band.
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6-9 APERTURE-COUPLED STACKED PATCHES

The discussion on aperture feeding of a patch in Section 6-3 stated that we can uti-
lize the aperture as another resonator to broadband the antenna. Figure 6-34 shows
the stacked patch antenna fed from an aperture. In this implementation we make the
coupling slot long enough to be one of the resonators, which increases the number
of resonators to three: the aperture, the lower patch, and the upper patch. We must
use element spacing to control coupling because frequencies control resonator sizes.
By careful control of parameters two loops will form in the Smith chart response of
impedance and be made to wrap tightly around the center of the chart [28] as shown
in Figure 6-35b. We form these loops by coupling resonators. Undercoupling produces
small tight loops; overcoupling produces large loops.

Figure 6-35 illustrates the effect of aperture size. The left Smith chart shows under-
coupling between the aperture and the lower patch by the small left loop. We increase
the coupling by increasing the aperture slot length (Figure 6-35b) or by increasing the
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Feedline(W, dus, Lstup)

Feed Substrate [
(&, df, tan &)

FIGURE 6-34 Construction of a resonant aperture coupled dual patch in exploded view.
(From [28], Fig. 1, © 1998 IEEE.)
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FIGURE 6-35 Effect on increasing slot length, SL, of apertures in stacked dual patches: (a)
SL = 8 mm; (b) SL = 10mm; (¢) SL = 12 mm. (From [28], Fig. 4, © 1998 IEEE.)
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lower patch size or reducing the lower patch thickness. The best results have been
obtained by having the lower-frequency (left) loop determined by the lower patch
and aperture. Overcoupling the aperture to the lower patch produces the impedance
locus of Figure 6-35¢. We control the upper loop size by varying the upper patch
size, the relative size between the two patches, and the upper substrate thickness. The
lower patch size is a critical parameter because it affects the coupling and size of
both loops while shifting their center frequencies. For fixed sizes of the other two res-
onators, decreasing the lower patch size decreases the coupling to the aperture while
increasing the coupling to the upper patch. Increasing aperture size increases cou-
pling to the aperture and decreases coupling to the upper patch. By remembering that
overcoupling produces larger Smith chart loops, we determine in which direction to
change parameters by observing changes in analytical results on the Smith chart to
produce optimum designs.

Because the slot aperture is one of the three resonators, we cannot vary its length
to determine coupling to the lower patch. The overcoupled large slot produces high
resistance at the microstrip input. We can lower this impedance by offset feeding the
slot or by using a wide transmission line. A single offset line will unbalance the fields
in the slot and lead to unbalanced excitation of the patches. This unbalanced excitation
on the patches increases cross-polarization. The dual balanced offset feeding shown in
Figure 6-36, where we join the two lines in a reactive power divider, both lowers the
resistance and balances the patch excitation.

A design using rectangular patches for a single linear polarization achieved a 67%
2:1 VSWR bandwidth [28]. The only significant problem with the design is the poor
front-to-back ratio, which is reduced to 6 dB at the upper frequencies as the aperture
radiation increases. Placing a reflector patch below the microstrip feed line, it can
be sized to reduce the F/B ratio by forming a Yagi—Uda antenna with the stacked
patch [29]. Figure 6-37 illustrates an exploded view of a dual polarized aperture stacked
patch. The potential bandwidth shrinks because we lose width as a parameter with
square patches to optimize impedance. The key element of this design is the feed
crossed slot [30]. The crossed-slot feeding aperture is located on a ground plane shared
by microstrip networks located below and above the aperture. Each network consists
of a reactive power divider to raise the impedance of the feed lines and allow offset
feeding of the slot for each polarization. The balanced feed reduces cross-polarization
and cross coupling between the two ports that would occur in both the crossed slot

Low Impedance 2t
Line
™ Lstub 100Q Line Ltats
502 Line / 50Q Lineﬂ

(a) (b)

FIGURE 6-36 Impedance matching for resonant aperture dual stacked patches: (a) wide trans-
mission line; (b) dual offset feed. (From [28], Fig. 3, © 1998 IEEE.)
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FIGURE 6-37 Exploded view of construction of a dual polarized aperture-fed stacked patch
utilizing a crossed strip reflector. (From [8], Fig. 3.6.22, © 2003 Kluwer Academic Publishers.)

and the patch elements. This shows that the slot that couples to a patch resonator can
be fed by a microstrip line located either below or above the slot. The ground plane
between the two networks for each polarization eliminates direct coupling between the
microstrip networks and symmetrical feeding reduces coupling in the slot.

Because we use long slots to feed the lower microstrip patch in an overcoupled
excitation, direct coupling of the upper microstrip to the lower patch is minimal in
comparison. We use thin substrates of moderate dielectric constant (¢, = 2.2) to sup-
port the etched patches and foam layers between to separate the patches to increase
bandwidth and control coupling. Figure 6-37 shows a crossed dipole used as a reflector
element below the microstrip feed lines to reflect direct radiation from the crossed slot
that reduces the F/B ratio.

6-10 PATCH ANTENNA FEED NETWORKS

Patch antenna arrays may be fed from below (Figure 6-9) by using a stripline distribu-
tion network. The connections between the boards greatly complicate the assembly. A
connection made vertically from the center strip of a stripline unbalances the fields and
induces parallel-plate modes. Shorting pins between the ground planes suppress this
mode. It is far easier to etch the feed network on the microstrip and use either edge
feeds or aperture feeds with the network located below the patch layer. Feed networks
radiate very little in comparison with the patches when etched on the same substrate
because radiation from fringing fields on the two sides of the microstrip lines cancel
each other except at discontinuities (corners and steps).

Consider the equally fed array (Figure 6-38). Equal amplitude and phase feeding
generates virtual magnetic walls between the patches as shown. We can join the edges
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FIGURE 6-38 Equally fed microstrip patch array.

between the patches without effect, since the midpoint remains a virtual open circuit
and the separate patches join into a continuous strip. The feeds must be spaced close
enough together to prevent grating lobes and to provide uniform amplitude along the
edges. These antennas can be wrapped around missiles to provide omnidirectional
coverage about the roll axis. To eliminate pattern ripple, feeds must be spaced about
every 0.75X in a circular array. The resistance at each feed at resonance will be the
combination of the radiation conductances from the portions of the edges between the
magnetic walls.

Figure 6-38 illustrates an equally fed four-element array. Starting from the patch, a
quarter-wavelength transformer reduces the roughly 200-2 impedance to 100€2. Two
100-2 lines join in shunt to 502 at their juncture. A 70.7-Q quarter-wavelength line
transforms the 509 back to 100Q2. We continue this sequence for any 2V-array for
reactive power dividers at each junction. Equal path lengths from the input excite
them with equal phases. Arrays with the number of elements different from 2V-are
possible, but they require more difficult feed networks. A 100-Q2 system was picked
because 50-2 lines on low-dielectric-constant substrates are quite wide.

The reactive power divider (Figure 6-38) has more bandwidth than the patch while
it is matched at the input but not at its outputs. The network can be analyzed by using
even and odd modes and shows that the output return loss is 6dB, and it provides
only 6dB of isolation between outputs. The power reflected from a damaged antenna
distributes to the other elements of the array and produces an effect greater than that
of just a missing element. Making power dividers with isolation resistors reduces this
problem, but we cannot justify the added difficulty of mounting resistors when both
good etchings and low probability of damage make them unnecessary.

We must be wary of coupling between different parts of the feed network. We
want to pack the feed network into the smallest area, but coupled signals between the
lines produce unexpected anomalies. Distinguishing direct radiation from the feed and
coupling redistribution is difficult. Although couplings are predictable, they appear as
random errors when we cannot perform a full analysis. Unfortunately, the coupling
between microstrip lines falls off quite slowly. Table 6-6 lists the coupling and peak
errors for 100-2 lines; those of 50-C2 lines are very similar. We read the amplitude
and phase errors from Scales 1-8 and 1-9.
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TABLE 6-6 Peak Feed Errors Due to Microstrip
Coupling for 100-2 Lines (¢, = 2.4)

Spacing/Substrate  Coupling Amplitude Phase

Thickness (dB) Error (dB) Error (deg)
1.0 16 1.5 9.0
2.0 23 0.7 4.0
3.0 28 0.4 2.3
4.0 32 0.22 1.5
5.0 35 0.12 1.0

6-11 SERIES-FED ARRAY

If we reduce the width of the patch, the radiation conductance is insufficient to match
the input. We can use the microstrip patch as a transmission line and connect a line
opposite the feed to lead to other patches (Figure 6-39). If we space the patches by half-
wavelengths, the impedances of the patches will add in phase at the input, because
it rotates once around the Smith chart in A/2. The characteristic impedance of the
connecting lines has no effect at center frequency. The junction of the transmission-
line feeder and the patch introduces excess phase shift. In arrays of a few elements, the
extra phase shift can be ignored, but arrays with a large number of elements, or when
we design for critical amplitude taper, must account for §. Of course, traveling-wave
or resonant arrays can be designed. The frequency dispersion of the traveling-wave
array can be used to frequency-scan the beam.

Various experimental methods have been devised to measure the parameters of the
series array. Metzler [31] performed experiments on uniform-width element arrays to
determine the radiation conductance and excess phase shift. Measuring the transmission
loss through the array as a network with input and output connectors determines the
radiation conductance of the patches. An empirical equation was obtained:

1.757 W
G =0.0162 <)»—> 0.033 < - < 0.254 (6-39)
0

where G is the total radiation conductance of each patch, with half from each edge.
Measurement of the beam direction of the uniform traveling-wave array determines
the excess phase shift in each patch.

Jones et al. [32] model the patch (Figure 6-39) with extensions A due to the fringing
fields as a transmission line: L + 2A long. The other excess phase shift, due to the step,
is modeled as extensions to the input lines (§). Jones et al. perform measurements on
single elements to establish these lengths. A is found from the resonant frequency of the
patch: L +2A = A/2,/e.xr, where e is given by Eq. (6-19). When the transmission-
line phase is measured through the patch at resonance, the excess phase beyond 7 is
equated to a phase shift length in the narrow feeder lines:

AN

28 = g QPexcess

where Ay is the wavelength in the narrow line.
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(o
FIGURE 6-39 Series-fed patch and its equivalent circuit. (From [32], Fig. 2, © 1982 IEEE.)

When designing the array, we vary the widths of the patches to achieve the desired
amplitude taper. The voltage distribution at each patch is given by V /g, where g is
the patch conductance. Standing-wave (resonant) arrays require that the sum of the
conductances be equal to the input conductance desired. We have some latitude when
we feed the array through a quarter-wavelength transformer. The nonresonant array
requires a matched load on the end to prevent standing waves. We must pick the ratio
of the power dissipated to the radiated power that gives us an extra parameter with
which to optimize the design. We control the beam direction by spacing the elements
to achieve the phase shift required.

6-12 MICROSTRIP DIPOLE [33]

As the width W of a patch narrows, the input impedance increases. When the width
approaches that of a microstrip feed line, either the patch fails to be a resonator or the
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feed line becomes very narrow in trying to transform the impedance. The microstrip
dipole solves these problems by having a coupled line feeder. The dipole is a half-
wavelength strip whose width equals that of a microstrip feed line. A line etched
on a substrate below feeds the dipole by coupling into the strip (Figure 6-40a). The
equivalent circuit (Figure 6-40b) transforms the high impedance of the dipole through
the unequal coupled lines. By varying the coupling, we can change the input impedance
at resonance. Best results occur for quarter-wavelength overlap where the equivalent
stubs (Figure 6-40b) do not contribute reactance. We vary the coupling by changing
the thickness of the substrate between the strips or by offsetting the lower strip.

The dipole radiates as a narrow patch and not as a dipole. No pattern nulls appear
along the axis of the strip, but they occur more strongly in the direction of the equivalent
magnetic currents of the edges. The H-plane pattern becomes quite broad for the narrow
strip width. The feed distribution circuit is etched on the substrate below the dipoles.
With the feed circuit on a separate level, we have greater freedom in the feed network
design to excite desired distributions. Also, because the dipoles are small, we can use
density tapering of the dipoles to that end. Proper design requires measurement [34]

Overlap Region

Microstrip Feed Line

Ground Plane

’4—9 —
de, Z8o o

a a
Z0e -Z00 _ | 4= G20
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[ Fe o
-0
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F=C,Cp +C,Cy + C,Cyp

FIGURE 6-40 (a) Microstrip dipole; (b) equivalent circuit. [(») From G. L. Matthaei et al.,
Microwave Filters, Impedance Matching Networks, and Coupling Structures, © 1980 Artech
House, Inc.]
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to obtain the desired effect, since mutual coupling will change the distribution by
changing the active impedance of each dipole. The feed network must compensate for
the coupling.

6-13 MICROSTRIP FRANKLIN ARRAY [35]

An electrically long line with a standing wave on it fails to radiate on broadside
because the many cycles cancel each other. We obtain a pattern with many nulls and
lobes. By folding the lines with out-of-phase standing-wave currents close together, we
can prevent their radiation. The other portions are free to radiate (Figure 6-41a). The
Franklin array consists of straight sections A/2 long connected by A /4 shorted stubs.
The standing-wave currents on the straight portions add in phase.

We can construct a microstrip version (Figure 6-41b). Half-wavelength lines act as
radiators (patches). We connect them with half-wavelength lines folded into stubs so
that the counteracting standing-wave currents do not radiate. The straight lines are
narrow patches. The total radiation conductance of each strip is

1 /(W2
6= <7> (6-40)

for narrow strip widths W, where A is the free-space wavelength. Using lines for
the stubs whose impedance is twice the radiating strip impedance reduces unwanted
internal reflections. The two stubs add in shunt. Since the antenna is quite narrowband
and the length of the lines between patches is a half-wavelength long, the impedance
of these connecting arms has a secondary effect.

Example Design an eight-wavelength array at 10 GHz. There are 16 patches in
the array.

The radiation conductances add for elements spaced at A/2 intervals. For a 100-Q
input, each patch supplies a conductance 0.01/16. We solve Eq. (6-40) for the width:

0.01(45)
=/ ——2 = 0.168A
16

i i
fh dp | i
(@ T

2 l‘—L—’iﬂ
=<

Patch

] W

U

Jﬂl |
Connecting line

(b)
FIGURE 6-41 (a) Dipole and (b) microstrip Franklin arrays.
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If we use Eq. (6-39) from the series patch, we obtain W = 0.157X, within the range of
the empirical formula. For 10 GHz, W = 4.71 mm. On an 0.8-mm substrate (¢, = 2.21),
W/H = 5.89 and the impedance of the strip radiator Z, = 44.01 2. We need to find the
effective dielectric constant of the strip to determine the patch length and impedance.
From Eq. (6-19), ¢, = 1.97.

We calculate the cutback from each end by using Eq. (6-18); A = 0.40 mm. Each
radiating strip is

300 x 10°

L=—"—
1010(2)4/1.97

The radiating-strip impedance is Zo/\/e.r = 31.3 2. We need 62.6-Q2 connecting lines
in the stubs to achieve the broadest bandwidth. With so few radiators, we could use
100-Q2 connecting arms with little change in bandwidth and have more reasonable
connecting arm widths: 0.71 mm.

—2(0.40) = 9.88 mm

The example shows that the microstrip Franklin array works best for high frequen-
cies or long arrays. The elements are narrow, and the interconnecting arms are thin.

6-14 MICROSTRIP ANTENNA MECHANICAL PROPERTIES

A microstrip patch antenna has very desirable mechanical properties. It can withstand
tremendous shock and vibration. Because the antenna is on a solid substrate, the patch
cannot flex, and small changes in the substrate thickness have only a minor effect on
the resonant frequency. The commonly used soft substrate (Teflon and fiberglass) has
a good damped resilience. Microstrip patch antennas have been used to telemeter data
from artillery shells and high-velocity rockets, which have high shock and vibration
levels. The repeatability of the dimensions of the patches depends only on the etcher’s
art. Complicated shapes and feed networks are produced as cheaply as simple ones.

The antennas can withstand exposure to high temperatures when covered by a
radome made of the same soft dielectric as the substrate. The cover protects the metal
patches but has only a minor effect on the resonant frequency [36]. High temperatures
on the surface of the radome or ablation fail to change the resonance significantly
because the radome itself has only a minor effect. Variation in the dielectric constant
of the substrate from lot to lot causes problems with repeatability. The narrowband
antennas require measurement of the dielectric constant of each lot, and sometimes of
each sheet, to get the center frequency desired. A series of etching masks can be made
to cover the expected range. The antennas can be tuned with inductive shorting pins or
capacitive screws, but tuning is prohibitive when the number of elements in an array is
large. Careful quality control of the dielectric constant is the answer. Close monitoring
of the etching process may also be needed to prevent excessive undercutting.

Temperature variations can be a problem with thin substrates when the bandwidth
is narrow. The patch and substrate size grow when the temperature rises, but they are
overshadowed by the change in dielectric constant of soft substrates. Instead of decreas-
ing the resonant frequency because of the increased patch size, a lowered dielectric
constant raises the center frequency.

Whenever we need more bandwidth than a microstrip patch can provide, we must
turn to cavity antennas. We increase the antenna volume by penetrating the vehicle for
the cavity, but we gain a design parameter.
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7

HORN ANTENNAS

Horn antennas have a long history, traced in part in the collection of papers by Love [1]
together with papers on every other horn topic. Horns have a wide variety of uses, from
small-aperture antennas to feed reflectors to large-aperture antennas used by themselves
as medium-gain antennas. Horns can be excited in any polarization or combination of
polarizations. The purity of polarization possible and the unidirectional pattern make
horns good laboratory standards and ideal reflector feeds. Horns also closely follow
the characteristics predicted by simple theories.

Horns are analyzed using a variety of techniques. Barrow and Chu [2] analyzed
a sectoral horn, flaring in only one plane, by solving the boundary value problem
in the wedge. They expanded the fields in terms of Hankel functions in cylindrical
coordinates. The fields form an equiphase surface over a cylindrical cap to which the
Kirchhoff—-Huygens equivalent current method [Eq. (2-23)] can be applied to com-
pute the pattern. Similarly, Schorr and Beck [3] use spherical Hankel and Legendre
functions to analyze conical horns. The integration surface consists of a spherical cap.
Schelkunoff and Friis [4] use the mouth of the horn as the aperture and approximate
the phase distribution as quadratic. Both aperture theories have the same valid pattern
range. The method predicts patterns accurately in the area in front of the aperture.
The error increases as the plane of the aperture is approached. The predicted pattern
remains continuous and gives no indication of its increasing error. GTD methods [5]
predict the pattern both in back and in front of the aperture while providing estimates
of the error in the predictions. Most of the details needed for design can be obtained
from the aperture theory. Only GTD predicts sidelobes accurately, since no assumption
of zero fields outside the horn aperture is made.

Figure 7-1 shows the general horn geometry. The input waveguide can be either
rectangular or circular (elliptical). W is the width of a rectangular aperture, and a is
the radius of a circular aperture. The distance from the junction of the projected sides
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FIGURE 7-1 General geometry of a horn.

to the aperture is the slant radius R. The distance along the centerline from the aperture
to the waveguide is the axial length. We derive the aperture field amplitude from the
input waveguide mode while the phase distribution is approximately quadratic across
the aperture. We assume that the aperture fields radiate in spherical waves from the
projected juncture of the sides, and the extra distance along the sides compared with
the distance to the center of the aperture is given by

A=R—VR—a?

a? a? w?
~R|Il—-(1-— = = __
2R? 2R 8R

We divide by wavelength to obtain the dimensionless constant S of the quadratic phase
distribution:
A w? a’
S=—=—=— (7-1)
A 8AR 2AR

Since the semiflare angle 6y of most practical horns is small, we use the quadratic
pha